【模板】网络最大流
类型题目描述
如题,给出一个网络图,以及其源点和汇点,求出其网络最大流。
输入格式
第一行包含四个正整数 n , m , s , t n,m,s,t n,m,s,t,分别表示点的个数、有向边的个数、源点序号、汇点序号。
接下来 m m m 行每行包含三个正整数 u i , v i , w i u_i,v_i,w_i ui,vi,wi,表示第 i i i 条有向边从 u i u_i ui 出发,到达 v i v_i vi,边权为 w i w_i wi(即该边最大流量为 w i w_i wi)。
输出格式
一行,包含一个正整数,即为该网络的最大流。
样例 #1
样例输入 #1
4 5 4 3
4 2 30
4 3 20
2 3 20
2 1 30
1 3 40
样例输出 #1
50
提示
样例输入输出 1 解释
题目中存在 3 3 3 条路径:
- 4 → 2 → 3 4\to 2\to 3 4→2→3,该路线可通过 20 20 20 的流量。
- 4 → 3 4\to 3 4→3,可通过 20 20 20 的流量。
- 4 → 2 → 1 → 3 4\to 2\to 1\to 3 4→2→1→3,可通过 10 10 10 的流量(边 4 → 2 4\to 2 4→2 之前已经耗费了 20 20 20 的流量)。
故流量总计 20 + 20 + 10 = 50 20+20+10=50 20+20+10=50。输出 50 50 50。
数据规模与约定
- 对于 30 % 30\% 30% 的数据,保证 n ≤ 10 n\leq10 n≤10, m ≤ 25 m\leq25 m≤25。
- 对于 100 % 100\% 100% 的数据,保证 1 ≤ n ≤ 200 1 \leq n\leq200 1≤n≤200, 1 ≤ m ≤ 5000 1 \leq m\leq 5000 1≤m≤5000, 0 ≤ w < 2 31 0 \leq w\lt 2^{31} 0≤w<231。
代码板子
#include <bits/stdc++.h>
#define buff \
ios::sync_with_stdio(false); \
cin.tie(0);
#define int long long
#define INF 1e18
using namespace std;
const int N = 209, M = 10009;
int n, m, beg, ed;
int e[M], f[M], h[N], ne[M], idx;
int d[N], cur[N];
// cur[i]代表从i这个点的哪条弧开始搜(cur[i]之前的弧都流量满了)
void add(int u, int v, int w)
{
e[idx] = v, ne[idx] = h[u], f[idx] = w, h[u] = idx++;
e[idx] = u, ne[idx] = h[v], f[idx] = 0, h[v] = idx++;
}
// 进行bfs,从源点开始搜,记录每层的点的层数,并初始化当前弧数组cur,搜到汇点就返回,说明找到了增广路
bool bfs()
{
memset(d, -1, sizeof d);
queue<int> q;
q.push(beg);
d[beg] = 0, cur[beg] = h[beg];
while (q.size())
{
int t = q.front();
q.pop();
for (int i = h[t]; ~i; i = ne[i])
{
int j = e[i];
// 只走之前没走过的点,并且只走容量为正的弧(因为增广路路径上的边容量都是正的)
if (d[j] == -1 && f[i])
{
d[j] = d[t] + 1;
if (j == ed)
return true;
cur[j] = h[j];
q.push(j);
}
}
}
return false;
}
// 从点idx开始走,在容量限制不超过limit的情况下,最多能多流多少流
int dfs(int idx, int limit)
{
// 如果已经到达汇点了,那么limit的流都能流,返回limit
if (idx == ed)
return limit;
int flow = 0;
// 只从点idx的当前弧开始搜边,并且如果flow < limit(即还能增加流量)才继续搜
for (int i = cur[idx]; ~i && flow < limit; i = ne[i])
{
// 更新当前弧,走到这里的时候说明i前面的弧都满了,不需要搜了
cur[idx] = i;
int j = e[i];
// 只走离汇点更近的点,并且只走容量大于0的点
if (d[j] == d[idx] + 1 && f[i])
{
int t = dfs(j, min(f[i], limit - flow));
if (!t)
d[j] = -1; 如果从v走不能增加流量了,那么v这个点以后再也不用访问了,将其层数设为-1使得以后不会再走j
// 更新残留网络
f[i] -= t, f[i ^ 1] += t, flow += t;
}
}
return flow;
}
int dinic()
{
int ans = 0, flow;
// 先bfs一下看有没有增广路,如果有的话从S开始搜所有长度为S到T最短路的增广路,并累加流量
while (bfs())
while (flow = dfs(beg, INF))
ans += flow;
return ans;
}
signed main()
{
cin >> n >> m >> beg >> ed;
memset(h, -1, sizeof h);
for (int i = 1; i <= m; i++)
{
int a, b, c;
cin >> a >> b >> c;
add(a, b, c);
}
cout << dinic() << '\n';
}