网络最大流 Dinic【模板】带简单注释

【模板】网络最大流

类型题目描述

如题,给出一个网络图,以及其源点和汇点,求出其网络最大流。

输入格式

第一行包含四个正整数 n , m , s , t n,m,s,t n,m,s,t,分别表示点的个数、有向边的个数、源点序号、汇点序号。

接下来 m m m 行每行包含三个正整数 u i , v i , w i u_i,v_i,w_i ui,vi,wi,表示第 i i i 条有向边从 u i u_i ui 出发,到达 v i v_i vi,边权为 w i w_i wi(即该边最大流量为 w i w_i wi)。

输出格式

一行,包含一个正整数,即为该网络的最大流。

样例 #1

样例输入 #1

4 5 4 3
4 2 30
4 3 20
2 3 20
2 1 30
1 3 40

样例输出 #1

50

提示

样例输入输出 1 解释

题目中存在 3 3 3 条路径:

  • 4 → 2 → 3 4\to 2\to 3 423,该路线可通过 20 20 20 的流量。
  • 4 → 3 4\to 3 43,可通过 20 20 20 的流量。
  • 4 → 2 → 1 → 3 4\to 2\to 1\to 3 4213,可通过 10 10 10 的流量(边 4 → 2 4\to 2 42 之前已经耗费了 20 20 20 的流量)。

故流量总计 20 + 20 + 10 = 50 20+20+10=50 20+20+10=50。输出 50 50 50


数据规模与约定
  • 对于 30 % 30\% 30% 的数据,保证 n ≤ 10 n\leq10 n10 m ≤ 25 m\leq25 m25
  • 对于 100 % 100\% 100% 的数据,保证 1 ≤ n ≤ 200 1 \leq n\leq200 1n200 1 ≤ m ≤ 5000 1 \leq m\leq 5000 1m5000 0 ≤ w < 2 31 0 \leq w\lt 2^{31} 0w<231

代码板子

#include <bits/stdc++.h>
#define buff                     \
   ios::sync_with_stdio(false); \
   cin.tie(0);
#define int long long
#define INF 1e18
using namespace std;
const int N = 209, M = 10009;
int n, m, beg, ed;
int e[M], f[M], h[N], ne[M], idx;
int d[N], cur[N];
// cur[i]代表从i这个点的哪条弧开始搜(cur[i]之前的弧都流量满了)
void add(int u, int v, int w)
{
   e[idx] = v, ne[idx] = h[u], f[idx] = w, h[u] = idx++;
   e[idx] = u, ne[idx] = h[v], f[idx] = 0, h[v] = idx++;
}
// 进行bfs,从源点开始搜,记录每层的点的层数,并初始化当前弧数组cur,搜到汇点就返回,说明找到了增广路
bool bfs()
{
   memset(d, -1, sizeof d);
   queue<int> q;
   q.push(beg);
   d[beg] = 0, cur[beg] = h[beg];

   while (q.size())
   {
       int t = q.front();
       q.pop();
       for (int i = h[t]; ~i; i = ne[i])
       {
           int j = e[i];
           // 只走之前没走过的点,并且只走容量为正的弧(因为增广路路径上的边容量都是正的)
           if (d[j] == -1 && f[i])
           {
               d[j] = d[t] + 1;
               if (j == ed)
                   return true;

               cur[j] = h[j];
               q.push(j);
           }
       }
   }
   return false;
}
// 从点idx开始走,在容量限制不超过limit的情况下,最多能多流多少流
int dfs(int idx, int limit)
{
   // 如果已经到达汇点了,那么limit的流都能流,返回limit
   if (idx == ed)
       return limit;

   int flow = 0;
   // 只从点idx的当前弧开始搜边,并且如果flow < limit(即还能增加流量)才继续搜
   for (int i = cur[idx]; ~i && flow < limit; i = ne[i])
   {
       // 更新当前弧,走到这里的时候说明i前面的弧都满了,不需要搜了
       cur[idx] = i;
       int j = e[i];
       // 只走离汇点更近的点,并且只走容量大于0的点
       if (d[j] == d[idx] + 1 && f[i])
       {
           int t = dfs(j, min(f[i], limit - flow));
           if (!t)
               d[j] = -1;  如果从v走不能增加流量了,那么v这个点以后再也不用访问了,将其层数设为-1使得以后不会再走j
           // 更新残留网络
           f[i] -= t, f[i ^ 1] += t, flow += t;
       }
   }
   return flow;
}
int dinic()
{
   int ans = 0, flow;
   // 先bfs一下看有没有增广路,如果有的话从S开始搜所有长度为S到T最短路的增广路,并累加流量
   while (bfs())
       while (flow = dfs(beg, INF))
           ans += flow;

   return ans;
}
signed main()
{
   cin >> n >> m >> beg >> ed;
   memset(h, -1, sizeof h);
   for (int i = 1; i <= m; i++)
   {
       int a, b, c;
       cin >> a >> b >> c;
       add(a, b, c);
   }

   cout << dinic() << '\n';
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Joanh_Lan

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值