题目如下:
思路 or 题解:
我们通过读题可以发现是一个无向图 & 环相关 问题。
本题需要计算:环连通块的数量 & 非环连通块的数量,在这里可以通过 并查集 快速求解。
如果我们在连接的时候发现祖先是相同的,我们就找到了一个环连通块
最后我们剩下的就是非环连通块。
AC 代码:
/*
Make it simple and keep self stupid
author:Joanh_Lan
*/
#pragma GCC optimize(3)
#pragma GCC optimize("inline") // 如果比赛允许开编译器优化的话,可以默写这两段
#include <iostream>
#include <algorithm>
#include <vector>
#include <string>
#include <numeric>
#include <cstring>
#include <cmath>
#include <map>
#include <unordered_map>
#include <bitset>
#include <set>
#include <random>
#include <ctime>
#include <queue>
#include <stack>
#include <climits>
#define buff \
ios::sync_with_stdio(false); \
cin.tie(0);
// #define int long long
#define ll long long
#define PII pair<int, int>
#define px first
#define py second
typedef std::mt19937 Random_mt19937;
Random_mt19937 rnd(time(0));
using namespace std;
const int mod = 1e9 + 7;
const int inf = 2147483647;
const int N = 200009;
//int Mod(int a,int mod){return (a%mod+mod)%mod;}
//int lowbit(int x){return x&-x;}//最低位1及其后面的0构成的数值
//int qmi(int a, int k, int p){int res = 1 % p;while (k){if (k & 1) res = Mod(res * a , p);a = Mod(a * a , p);k >>= 1;}return res;}
//int inv(int a,int mod){return qmi(a,mod-2,mod);}
//int lcm(int a,int b){return a*b/__gcd(a,b);}
int n, m, f[N];
bool st[N];
int find(int x)
{
return f[x] == x ? f[x] : f[x] = find(f[x]);
}
void solve()
{
cin >> n >> m;
int ans1 = 0, ans2 = 0;
for (int i = 1; i <= n; i++)
f[i] = i;
for (int i = 1; i <= m; i++)
{
char c1, c2;
int a1, a2;
cin >> a1 >> c1 >> a2 >> c2;
a1 = find(a1), a2 = find(a2);
if (a1 == a2)
ans1++, st[a1] = 1;
else
f[a1] = a2;
}
for (int i = 1; i <= n; i++)
{
if (f[i] == i && !st[i])
ans2++;
}
cout << ans1 << ' ' << ans2 << '\n';
}
int main()
{
buff;
int _ = 1;
// cin >> _;
while (_--)
solve();
}