AtCoder Beginner Contest 293 -- D - Tying Rope(并查集)

题目如下:

在这里插入图片描述

思路 or 题解:

我们通过读题可以发现是一个无向图 & 环相关 问题。
本题需要计算:环连通块的数量 & 非环连通块的数量,在这里可以通过 并查集 快速求解。

如果我们在连接的时候发现祖先是相同的,我们就找到了一个环连通块
最后我们剩下的就是非环连通块。

AC 代码:

/*
Make it simple and keep self stupid
author:Joanh_Lan
*/
#pragma GCC optimize(3)
#pragma GCC optimize("inline") // 如果比赛允许开编译器优化的话,可以默写这两段
#include <iostream>
#include <algorithm>
#include <vector>
#include <string>
#include <numeric>
#include <cstring>
#include <cmath>
#include <map>
#include <unordered_map>
#include <bitset>
#include <set>
#include <random>
#include <ctime>
#include <queue>
#include <stack>
#include <climits>
#define buff                     \
    ios::sync_with_stdio(false); \
    cin.tie(0);
// #define int long long
#define ll long long
#define PII pair<int, int>
#define px first
#define py second
typedef std::mt19937 Random_mt19937;
Random_mt19937 rnd(time(0));
using namespace std;
const int mod = 1e9 + 7;
const int inf = 2147483647;
const int N = 200009;
//int Mod(int a,int mod){return (a%mod+mod)%mod;}
//int lowbit(int x){return x&-x;}//最低位1及其后面的0构成的数值
//int qmi(int a, int k, int p){int res = 1 % p;while (k){if (k & 1) res = Mod(res * a , p);a = Mod(a * a , p);k >>= 1;}return res;}
//int inv(int a,int mod){return qmi(a,mod-2,mod);}
//int lcm(int a,int b){return a*b/__gcd(a,b);}
int n, m, f[N];
bool st[N];
int find(int x)
{
	return f[x] == x ? f[x] : f[x] = find(f[x]);
}
void solve()
{
	cin >> n >> m;
	int ans1 = 0, ans2 = 0;
	for (int i = 1; i <= n; i++)
		f[i] = i;
	for (int i = 1; i <= m; i++)
	{
		char c1, c2;
		int a1, a2;
		cin >> a1 >> c1 >> a2 >> c2;
		a1 = find(a1), a2 = find(a2);
		if (a1 == a2)
			ans1++, st[a1] = 1;
		else
			f[a1] = a2;
	}
	for (int i = 1; i <= n; i++)
	{
		if (f[i] == i && !st[i])
			ans2++;
	}
	cout << ans1 << ' ' << ans2 << '\n';
}
int main()
{
	buff;
	int _ = 1;
	// cin >> _;
	while (_--)
		solve();
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Joanh_Lan

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值