1、打开anaconda Prompt,查看自己的CUDA版本
在anaconda Prompt里面输入nvidia-smi
这里面的12.3就是我的CUDA版本
2、创建一个虚拟环境
conda create -n my python=3.8
这句话就是创建一个python版本为3.8,名字为my的虚拟环境(3.8、my可修改为自己想要的python版本和名字),如下图所示:
中间会询问是否继续,输入y即可继续下载。
如果出现错误或者下载太慢,添加清华镜像源:
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/
conda config --set show_channel_urls yes
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/
之后再重新创建即可(在虚拟环境中点击键盘的上下键可以直接回到上条或者小条指令,不需要重新输入代码)
3、进入pytorch官网PyTorch,点击GET STARTED,选择下载代码(根据之前查看到的自己电脑上的CUDA版本进行选择,不能选比自己CUDA版本大的下载代码)如下图所示:
复制下载代码:
conda install pytorch torchvision torchaudio pytorch-cuda=11.8 -c pytorch -c nvidia
在继续下载前需要确保进入了刚刚创建的虚拟环境中,正如上述创建虚拟环境成功后的提示,输入activate my(自己的虚拟环境名字)
有了这样的变换才算是成功进入了虚拟环境。
之后再输入刚才的指令,等待下载即可。结束后出现done即是下载成功了。
4、验证是否下载成功
输入python展示你的python版本,之后继续输入
import torch
torch.cuda.is_available()
显示True就是成功安装了gpu版本的pytorch环境。