- 第 89 篇 -
Date: 2025 - 04 - 06(发博客时间)
Author: 郑龙浩/仟墨
【蓝桥第27场月赛】
蓝桥第27场月赛 - 赛后总结
记笔记时间: 2025 -03 -26
文章目录
1 抓猪拿国一
题目
问题描述
蓝桥杯赛场上,选手小王脑洞大开,跑去问裁判:“裁判,蓝桥杯要是改成‘蓝桥抓猪大赛’,得抓多少头猪才能拿国一啊?”裁判愣了愣,但为了显摆幽默,淡定答道:“好说!想拿国一,从第一届开始,每届抓的猪数得是这一届的届数加上前面所有届数的总和。比如,第一届抓 11 头,第二届抓 1+2=31+2=3 头,第三届抓 1+2+3=61+2+3=6 头 …… 今年是第十六届蓝桥杯,你自己算算吧!”
现在,请你帮小王算算,要拿国一,总共得抓多少头猪?
输入格式
无。
输出格式
输出一个整数,表示答案。
思路
很水的一道题,累加即可
代码
#include <iostream>
using namespace std;
int main()
{
ios_base::sync_with_stdio(false);
cin.tie(nullptr); cout.tie(nullptr);
// 请在此输入您的代码
int num = 0;
for (int i = 1; i <= 16; i++) {
num += i;
}
cout << num;
return 0;
}
2 蓝桥字符
题目
问题描述
蓝桥杯官方近日收到了一份神秘的包裹,里面包含一个 U 盘和一张纸条,纸条上仅写有一个由小写字母组成的字符串 SS。经过初步检查,U盘内存储的内容似乎与即将到来的蓝桥杯大赛有关,但 U 盘被加密,无法直接访问。根据情报提供方的提示,U盘的密码与字符串 SS 中特定子序列的出现次数密切相关。
具体来说,密码等于字符串 SS 中子序列 lan
的出现次数。这里的子序列是指从字符串 SS 中按顺序选取字符(不一定连续)组成的新字符串。
为了帮助蓝桥杯官方顺利解开 U 盘的密码,你需要编写一个程序,计算字符串 SS 中子序列 lan
的出现次数。
输入格式
输入为一个由小写字母组成的字符串 SS,长度不超过 105105。
输出格式
输出一个整数,表示字符串 SS 中子序列 lan
的出现次数。
输入样例
lanlan
输出样例
4
说明
在字符串 lanlan
中,子序列 lan
出现了 44 次。具体来说,可以选取以下位置的字符:
- 第 1、2、31、2、3 个字符(
l
,a
,n
) - 第 1、2、61、2、6个字符(
l
,a
,n
) - 第 1、5、61、5、6 个字符(
l
,a
,n
) - 第 4、5、64、5、6 个字符(
l
,a
,n
)
思路
- 变量含义:
l
:记录当前可用的 ‘l’ 数量。a
:记录当前可用的 “la” 子序列数量。n
:记录当前可用的 “lan” 子序列数量。
- 如何计算:
- 遇到 ‘l’:
l++
(新的子序列起点)。 - 遇到 ‘a’:
a += l
(每个 ‘l’ 可与当前 ‘a’ 组成 “la”)。 - 遇到 ‘n’:
n += a
(每个 “la” 可与当前 ‘n’ 组成 “lan”)。
- 遇到 ‘l’:
代码
#include <bits/stdc++.h>
using namespace std;
string arr;
int l = 0, a = 0, n = 0;
int main()
{
ios_base::sync_with_stdio(false);
cin.tie(nullptr); cout.tie(nullptr);
// 请在此输入您的代码
cin >> arr;
for (char i : arr) {
if (i == 'l')
l++;
else if (i == 'a')
a += l;
else if (i == 'n')
n += a;
}
cout << n << '\n';
return 0;
}
3 蓝桥大使
题目
问题描述
小蓝和小桥是某学校的蓝桥大使,他们的主要任务是作为宣传人员在校内宣传蓝桥杯比赛。蓝桥杯是一项全国性的编程竞赛,吸引了众多学生参与。为了扩大比赛的影响力,学校决定在每个班级进行宣传,而小蓝和小桥则负责这项工作。
学校共有 nn 个班级,每个班级都需要进行宣传。小蓝和小桥可以选择去不同的班级宣传,但为了公平起见,他们决定尽量平均分配任务。具体来说:
- 小蓝将去 ⌊n2⌋⌊2n⌋)个班级宣传。
- 小桥将去剩下的 n−⌊n2⌋n−⌊2n⌋个班级宣传。
对于第 ii 个班级:
- 如果小蓝去宣传,他将获得 AiA**i 元的酬劳。
- 如果小桥去宣传,她将获得 BiB**i 元的酬劳。
小蓝和小桥希望最大化他们总共获得的酬劳,请你帮他们计算总酬劳最大值是多少?
输入格式
第一行包含一个整数 n(1≤n≤105)n(1≤n≤105),表示班级的数量。
接下来 nn 行,每行包含两个整数 Ai,Bi(1≤Ai,Bi≤109)A**i,B**i(1≤A**i,B**i≤109),分别表示小蓝和小桥去第 ii 个班级宣传时获得的酬劳。
输出格式
输出一个整数表示答案。
输入样例
5
10 20
30 40
100 60
90 80
100 110
输出样例
360
说明
小蓝去第 3,43,4 个班级宣传,小桥去第 1,2,51,2,5 个班级宣传,总共可以获得 100+90+110+20+40=360100+90+110+20+40=360 元。
思路
首先,先将小蓝ai - 小桥bi的值存入一个数组ci,也就是存储差值
然后,对这个差值进行从大到小的排序 --> 实际上可以理解为: ai - bi 存入 ci 然后对 c 进行排序,排序后就是哪个班级对于ai酬劳较大,哪个在前,
这样的话,只需要将前边一半的班级(ai酬劳肯定大于bi)给a即可,然后其余的给b
最后进行累加操作,将前边那一半排好序的班级给a,其余给b
代码
// 蓝桥大使 方法2
// // 思路:
// 首先,先将小蓝ai - 小桥bi的值存入一个数组ci,也就是存储差值
// 然后,对这个差值进行从大到小的排序
// ---> 实际上可以理解为: ai - bi 存入 ci 然后对 c 进行排序,排序后就是哪个班级对于ai酬劳较大,哪个在前,
// 这样的话,只需要将前边一半的班级(ai酬劳肯定大于bi)给a即可,然后其余的给b
// 最后进行累加操作,将前边那一半排好序的班级给a,其余给b
#include <bits/stdc++.h>
using namespace std;
const int N = 100005;
int a[N], b[N]; // 小蓝 小桥
int n; // 班级数量
int main( void ) {
cin >> n; // 输入班级数量
vector <pair <int, int>> c(n); // 存储 a - b 的差值
long long sum = 0; // 存储总报酬
// 输入a与b在每个教室的报酬
for (int i = 0; i < n; i ++) {
cin >> a[i] >> b[i];
c[i] = {{a[i] - b[i]}, i}; // 存入键 与 值 ---> 也就是差值 与 第几个教室
}
sort (c.rbegin(), c.rend()); // 对a与b在每个教室报酬的差值进行排序,从打到小排 --> 按照差值进行排序,随带着教室序列也进行了排序
int n2 = n / 2; // n 的一半
for (int i = 0; i < n; i ++){
if (i < n2)
sum += a[c[i].second]; // 将排序以后的教室的编号依次赋值
if (i >= n2)
sum += b[c[i].second];
}
cout << sum << '\n';
return 0;
}
4 拳头对决
没做明白
5 未来竞赛
题目如下:
问题描述
时间飞逝,转眼间来到了5025年,蓝桥杯大赛已经成为全球瞩目的盛事,吸引了来自世界各地的顶尖选手。每个国家和地区都派出了自己的精英队伍,准备在这场科技盛宴中大显身手。
本次大赛共有 NN 位参赛者,第 ii 位参赛者的编号位 ii,来自编号为 AiA**i 的国家。比赛机房的电脑从左到右依次编号为 11 到 NN,每位参赛者将在与自己编号相同的电脑上进行比赛。为了确保比赛的公平性,蓝桥杯官方决定对部分参赛者的电脑进行抽样监控。然而,监控方式必须满足以下条件:
- 监控的电脑数量不能为零。
- 同一个国家或地区的参赛者最多只能有两台电脑被监控,不能过多集中监控某个国家的选手。
- 如果同一个国家或地区的两台电脑被监控,它们之间的距离不能超过 DD。这里的距离定义为两台电脑编号之差的绝对值。
由于可能的监控方式实在太多,官方一时难以计算,于是他们向你求助,希望你能帮忙计算出所有合法的监控方式数量。
由于结果可能非常庞大,请将答案对 109+7109+7 取模后输出。
输入格式
第一行输入两个整数 N,D(1≤D<N≤105)N,D(1≤D<N≤105) 表示参赛者数量以及选取的距离要求。
第二行输入 NN 个整数 A1,A2,A3,⋯,AN(1≤Ai≤109)A1,A2,A3,⋯,A**N(1≤A**i≤109) 表示每位参赛者的国家编号。
输出格式
输出一个整数表示答案,由于答案可能很大,你需要对 109+7109+7 取模后输出。
样例输入
5 2
1 2 1 2 2
样例输出
23
说明
对于样例,可能的监控方案有 [1,2,3,4],[1,2,4][1,2,3,4],[1,2,4]
,但 [1,2,3,5][1,2,3,5]
不合法,因为 22 号参赛者与 55 号参赛者来自同一国家且两人电脑距离为 33,不符合要求。
思路
有一个关键的技巧,我确实此前不知道,第一次知道:取模运算也有分配律
若
(a * b) ≡ c (mod m)
,则
(a mod m * b mod m) ≡ c (mod m)
也就是说(由AI解释)
虽然
(a mod m * b mod m) ≡ a*b (mod m)
,但这不意味着(a mod m * b mod m)
的数值等于a*b
,而是它们的余数在模m
下等价。
- 示例:
若a=7
,b=8
,m=5
:
(7 mod 5) = 2
,(8 mod 5) = 3
2*3 = 6
→6 mod 5 = 1
7*8 = 56
→56 mod 5 = 1
虽然6 ≠ 56
,但6 ≡ 56 ≡ 1 (mod 5)
这道题在刚开始的时候,我理解错了。
这道题是一个 二分查找 的题
首先利用 map 将所有的队员按照国家进行分类
需要灵活的使用 map <int, vector <int, int>> arr
map
存储的是键值对,且键是有顺序的,而这里的值是一个vector
数组,存储的是每个国家所有的参赛成员.
利用map
可以直接将每个国家的参赛成员进行分类,而map
的键就是国家编号,值就是参赛者的编号.
也就是利用 map
可以直接对其进行分类.
接下来就是如何找到监控电脑的所有方案,并且记录其方案数量
假如有两个国家,编号为 1 和 2
-
首先对国家编号为 1 的所有参赛成员进行分组(也就是确定方案数)
分组可以分为三类,如下
- 不检查任何一个参赛成员 –> 方案数为 1
- 只检查一个参赛成员 –> 方案数为 成员个数
- 检查两个参赛成员 --> 需要使用二分查找来确定方案数
将如上三种情况进行累加,得出国家1的所有方案数量
-
然后对国家编号为 2 的所有成员也进行分组(也就是确定方案数)
方法和国家1相同,得出国家 2的所有方案数量
-
最后 将国家1的方案数与国家2的方案数相乘 –> 得出来的就是总的方案数量
-
最最后,按照题目要求对结果进行取余即可,打印的时候 - 1,减去所有成员都不检查的情况
最难的地方就是: 只检查两个参赛成员的时候,方案数为多少
二分搜索或双指针都可以,我用的二分
-
首先,对该国家的每个成员进行遍历
-
然后,在每层的循环中(假设当前循环的成员为
i
),使用二分(假设二分中待定的成员用j
表示),确定下来最后一个满足距离限制 D (为两个成员的最大距离)的成员j
;然后,
j - i
就确定了 与i
结合进行分组的分组数量为多少
代码
// 5_未来竞赛
// 算法:二分
// DATE:2025 - 3 - 26
// Author: 郑龙浩/仟濹
#include <bits/stdc++.h>
using namespace std;
const int mod = 1e9 + 7; // 题目要求的取模的除数
int num, D; // 参赛人数 距离要求
long long cnt = 0; // 国家的存储方案数量
long long cnt2 = 1; // 总方案数量
map <int, vector <int>> arr; // 键是国家编号 值vector是不同国家的成员编号
int main()
{
ios_base::sync_with_stdio(false);
cin.tie(nullptr); cout.tie(nullptr);
cin >> num >> D; // 输入参赛人数 距离要求
// 在输入的同时,就已经利用 map 对输入的成员按照国家编号进行了分组
for (int i = 1; i <= num; i++) {
int t; // 暂存国家编号 ---> 键
cin >> t;
arr[t].push_back(i); // 将 成员编号为 n 的人存入自己的国家i
}
// 进入循环,确定该国家检查的方案数量
// 遍历map,并且将键设为 key,将值设为 vec
for (auto &[key, vec] : arr) {
int n; // 表示该国家的成员总个数,或者说是是该国家的第n个成员,注:最后一个的编号不是n,而是vec[n]
n = vec.size();
// 只检查1个成员的方案数 + 不检查任何成员的方案数(百分百为1)
cnt = n + 1;
// 同时检查两个成员的方案数量
for (int i = 0; i < n - 1; i++) {
// 二分搜索
int left = i + 1, right = n - 1; // 设置查找范围
int mid;
int ans = i; // 初始化为 i,若未找到则贡献为 0
while (left <= right) {
mid = (left + right) / 2;
// 两个参赛者的距离 <= 设限距离,可以继续尝试更大的距离,所以,第二个参赛者可以再往后确定 --> 左边界向右移动到中间,就可以继续查找距离i更远的成员了
if (vec[mid] - vec[i] <= D) {
left = mid + 1;
ans = mid;
} else // // 两个参赛者的距离 <= 设限距离,可以继续尝试更大的距离,所以,第二个参赛者可以再往后确定 --> 右边界向左移动到中间,就可以继续查找距离i更近的成员了
right = mid - 1;
}
cnt += ans - i; // ans - i 表示有多少个成员与i组合符合设定的距离限制
}
// 经过上面的循环,已经计算出了国家i 的方案数量,让所有的国家的方案数量相乘即可
cnt2 = (cnt2 * cnt) % mod;
}
cout << (cnt2 - 1) % mod;
return 0;
}
6 备份比赛数据
题目
问题描述
蓝桥杯大赛的组委会最近遇到了一个棘手的问题。他们有 N 台电脑需要备份比赛数据,每台电脑所需的备份时间分别为 A1,A2,…,AN分钟。
备份必须按编号顺序依次进行,即先第 1 台,再第 2 台,依此类推。每台电脑的备份需要工作人员持续操作,且必须安排在同一天内完成。例如,如果某台电脑的备份需要 5 分钟,那这 5 分钟必须安排在同一天,不能拆分到两天。如果当天剩余时间不足以完成某台电脑的备份,那就只能推迟到第二天进行。
每台电脑备份完成后,系统需要等待 Bi 分钟才能开始下一台的备份。这段等待时间不需要工作人员操作,且可以跨天进行。例如,如果第 1 台电脑的备份在第 1 天结束时完成,且 B1=10 分钟,那么第 2 台电脑的备份只需在第 2 天开始后等待 10 分钟就能进行。
现在,组委会希望尽量缩短每天的工作时间,以便工作人员能尽早下班休息。但上级有要求,所有电脑的备份必须在最多 T 天内完成。对此,请你帮助蓝桥杯组委会计算出每天最少需要安排的工作时间 M(M 最大不可超过 3600),以便所有电脑的备份能在 T 天内顺利完成。如果无论如何都无法满足条件,请直接输出 −1。
输入格式
第一行包含两个整数 N和 T(1≤N,T≤10^5),分别表示电脑的数量和最多允许的天数。
第二行包含 NN 个整数 A1,A2,…,AN(1≤Ai≤3600),表示每台电脑的备份时间。
第三行包含 NN 个整数 B1,B2,…,BN(1≤Bi≤3600),表示每台电脑备份完成后需要等待的时间。
输出格式
输出一个不超过 3600 的整数 M,表示每天最少需要安排的工作时间,以确保所有电脑的备份任务能在 TT 天内完成。若无法满足条件,则输出 −1−1。
样例输入
3 2
1 2 3
2 2 2
样例输出
5
样例说明
每天工作时间为 55 分钟时,备份任务将按以下方式进行:
- 第 11 天:
- 第 11 台电脑的备份需要 11 分钟(第 0∼10∼1 分钟)。
- 等待 B1=2B1=2 分钟(第 1∼31∼3 分钟)。
- 第 22 台电脑的备份需要 22 分钟(第 3∼53∼5 分钟)。
- 第 22 天:
- 等待 B2=2B2=2 分钟(第 0∼20∼2 分钟)。
- 第 33 台电脑的备份需要 33 分钟(第 2∼52∼5 分钟)。
所有备份任务可在 22 天内完成。
思路
算法:二分答案
最难的地方是 check() 函数怎么写,细节太多了,容易写错,需要好多的判断。
这是一个典型得二分题,需要二分搜索合适的每天最少需要安排的工作时间
当工作时间M可以满足条件,则更大的工作时间也肯定可以满足条件,此时应该尝试更小的工作时间
当工作时间M不满足条件,则更小的工作时间肯定也不满足条件,则需要尝试更大的工作时间
-
工作时间M的范围为: 1 ~ 3600
-
如何确定?–> check 怎么写
如果剩余时间不足以完成当前电脑的备份,则备份时间 Ai 要跨天进行,即推迟到下一天备份
备份完成后,判断等待时间 Bi 是否可以在当天完成等待,若不能则需要将等待时间分到下一天
如果当天剩余时间不足以满足当前电脑的备份时间,则需要将 该电脑的 所有 备份时间 推迟到下一天备份
如果当天剩余时间不足以满足当前电脑的等待时间,则可以将 该电脑的 部分 等待时间 分到下一天等待,也就是这个等待时间是可以分割的,而备份时间是必须在同一天
-
根据如上规则去写check,计算出需要总天数,然后用这个总天数与 设限天数 T相比,如果 < T,返回True, 则表示可以尝试更小的工作时间;如果 > T,返回 False,则表示可以尝试更大的工作时间
代码
没做出来