楔子
21世纪是信息时代,信息就是财富。数据(信息)采集是指从信息使用者的需要出发,通过各种渠道和形式获取相关信息的过程.。采集及时、准确、全面的信息是信息管理的基本前提,同时也是管理者决策的参考依据。
写论文时,从统计局网站粘贴几个数值;不定时将公示结果转存到Excel;批量把在线的高清美图下载到本地。这些都是 WEB 数据采集的日常例子。
信息采集最简单最原始的方式,就是人力直接操作,CTRL+C、CTRL+V一套组合拳下来,数据就到碗里来了👏🏻。不过,这数据量一旦上来,铁打的人都吃不消。于是乎,人们想到了用电脑来代替人工,爬虫程序就这样诞生了。
在此之前,我们应该先简单了解下网页内容渲染机制。
网页渲染机制
上图是 WEB 页面交互的简单模型,不谈及安全机制、浏览器兼容等😄。
常见自动化程序方案
所谓的自动化程序,就是用机器大批量地发起请求,拿到响应后再做处理。专业术语叫做
网页爬虫
或者网页机器人
。
模拟请求(基于代码或爬虫框架)
此方案需要我们至少熟悉一门编程语言(Python、Node.js、Java等),自行编写代码或者借助优秀的开源爬虫框架,实现数据获取。某些场景,还需要通过抓包分析目标网站的参数规则,然后通过组合式请求方能达到目的。
这里罗列下我用过或收藏且还在不断更新维护的框架:
名称 | 开发语言 | 简介 |
---|---|---|
Scrapy | Python | A fast high-level web crawling & scraping framework for Python. |
Pyspider | Python | A Powerful Spider(Web Crawler) System in Python. |
Nutch | Java | 一种高度可扩展、可伸缩的开源 Web 爬虫软件项目。功能强大,支持 Hadoop 集群内运行 |
webmagic | Java | 一个简单灵活的Java爬虫框架。基于WebMagic,你可以快速开发出一个高效、易维护的爬虫。真的非常简单😄 |
Spiderman2 | Java | 开源Web数据抽取工具,我没实际使用过 |
node-crawler | Node.js | Web Crawler/Spider for NodeJS + server-side jQuery 😉 |
开发者工具 F12 🛠️
首先访问目标网站,按需进行登录,然后按下键盘 F12(或者 Ctrl+Shift+I)进入开发者工具,可以在控制台
中写或贴入 JS 脚本,回车收尾😎。
这是我常用的一种方式,用户验证脚本跟少规模作业。
自动化测试工具(Selenium/Puppeteer/Playwright)
WEB 自动化测试工具,是指通过程序代替人工完成验证 WEB 功能的过程。当然,也能利用它来抓取数据。这类工具通过驱动程序(webdriver、DevTools Protocol),驱使浏览器执行既定的动作/脚本。
- Selenium:老牌大哥,我最开始接触的自动化测试工具,支持 Chrome、Edge、Firefox、IE、Safari 等浏览器,对开发语言支持也很广:Java、Python、C#、Ruby、JavaScript
- Puppeteer: Chrome 开发团队在 2017 年发布的一个 Node.js 包,用来模拟 Chrome 浏览器的运行。主打对 Chrome 的良好支持,社区有针对 Java、Python 版本。
- Playwright:微软大厂出品,浏览器支持 Chrome、Edge、Firefox、Safari,官方提供 Java、Python、Node.js、C# 编程语言的 SDK。
Electron / Traui
这两个软件跟上一节工具基本一致,之所以单独列出来,是因为它们提供了更丰富的接口,既能控制浏览器完成任务,又可以制作 GUI 界面(可用于与爬虫程序交互)。
2019年那会,我用闲余时间基于 Electron 做了个小玩具:
浏览器扩展(插件)
官方应该叫做浏览器扩展(Extensions),但是我们习惯叫做插件😄,后续文章我将重点以此方式进行实践。
浏览器扩展(插件)是运行在特定浏览器,遵循相关规范的应用程序包,由 JS、CSS、HTML 组成,能够管理标签页、注入代码、操作DOM、监控页面活动等。
插件功能非常强大,具体的文档详见Chrome Extensions Document。不过有一个小遗憾是不能在插件内打开标签页的开发者工具,官方给出的回答是出于安全考虑。
有大佬做的强大插件webscraper插件(本地使用免费)👍。
做了那么多年开发,自学了很多门编程语言,我很明白学习资源对于学一门新语言的重要性,这些年也收藏了不少的Python干货,对我来说这些东西确实已经用不到了,但对于准备自学Python的人来说,或许它就是一个宝藏,可以给你省去很多的时间和精力。
别在网上瞎学了,我最近也做了一些资源的更新,只要你是我的粉丝,这期福利你都可拿走。
我先来介绍一下这些东西怎么用,文末抱走。
(1)Python所有方向的学习路线(新版)
这是我花了几天的时间去把Python所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。
最近我才对这些路线做了一下新的更新,知识体系更全面了。
(2)Python学习视频
包含了Python入门、爬虫、数据分析和web开发的学习视频,总共100多个,虽然没有那么全面,但是对于入门来说是没问题的,学完这些之后,你可以按照我上面的学习路线去网上找其他的知识资源进行进阶。
(3)100多个练手项目
我们在看视频学习的时候,不能光动眼动脑不动手,比较科学的学习方法是在理解之后运用它们,这时候练手项目就很适合了,只是里面的项目比较多,水平也是参差不齐,大家可以挑自己能做的项目去练练。
(4)200多本电子书
这些年我也收藏了很多电子书,大概200多本,有时候带实体书不方便的话,我就会去打开电子书看看,书籍可不一定比视频教程差,尤其是权威的技术书籍。
基本上主流的和经典的都有,这里我就不放图了,版权问题,个人看看是没有问题的。
(5)Python知识点汇总
知识点汇总有点像学习路线,但与学习路线不同的点就在于,知识点汇总更为细致,里面包含了对具体知识点的简单说明,而我们的学习路线则更为抽象和简单,只是为了方便大家只是某个领域你应该学习哪些技术栈。
(6)其他资料
还有其他的一些东西,比如说我自己出的Python入门图文类教程,没有电脑的时候用手机也可以学习知识,学会了理论之后再去敲代码实践验证,还有Python中文版的库资料、MySQL和HTML标签大全等等,这些都是可以送给粉丝们的东西。
这些都不是什么非常值钱的东西,但对于没有资源或者资源不是很好的学习者来说确实很不错,你要是用得到的话都可以直接抱走,关注过我的人都知道,这些都是可以拿到的。
网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!