感谢每一个认真阅读我文章的人,看着粉丝一路的上涨和关注,礼尚往来总是要有的:
① 2000多本Python电子书(主流和经典的书籍应该都有了)
② Python标准库资料(最全中文版)
③ 项目源码(四五十个有趣且经典的练手项目及源码)
④ Python基础入门、爬虫、web开发、大数据分析方面的视频(适合小白学习)
⑤ Python学习路线图(告别不入流的学习)
网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!
一个完整的数据分析项目,大概可以分为这五个流程:数据获取——数据存储——数据清洗——数据分析——可视化分析,具体每部分都要掌握什么,下面给大家说清楚。
数据获取
数据获取是数据分析的第一步,关于一些内部数据大家可以找公司内部的人去要,其他外部数据如市场调研、竞品分析这些报告,大家可以在这些网站获取:
- 艾瑞网-数据报告:https://report.iresearch.cn/
- 易观分析-热门报告:https://www.analysys.cn/
- 友盟+数据报告:https://www.umeng.com/reports.html?from=hp
- 赛迪满天星行业报告:http://www.mtx.cn/#/
- 世界经济论坛报告:https://www.weforum.org/reports
- 普华永道行业报告:https://www.pwccn.com/zh/research-a
数据存储
企业常用的存储数据的数据库有哪些?不同数据库的存储区别又有哪些?下面跟我一起来了解常见数据库:
- **Access数据库:**是一个关系型数据库管理系统;本地桌面型数据库,存储的数据量较少,是小型的数据库;查询语句为SQL。
- **MYSQL数据库:**是一个关系型数据库管理系统;是开源的,总体拥有成本低;支持多种操作系统;
- **SQL Server 数据库:**是一个关系型数据库管理系统;是非开源的;中型的数据库;
- **Oracle数据库:**是一个关系型数据库管理系统;不是开源的;支持多种操作系统;
- **Hive 数据库:**是非关系型数据库管理系统;数据规模大;主要进行离线的大数据分析; 查询语句为HQL;
以上就是几种常见的数据库及介绍,方便大家在做数据分析的时候提取数据。
数据清洗
数据清洗是利用相关技术将“脏”数据转换为满足质量要求的数据。下面通过一张图描述数据清洗的原理。
从图中可以看出,同一值的不同表示、拼写错误、不同的命名习惯、不合法的值以及空值都会导致“脏”数据出现,通过定义好的数据清洗策略和清洗规则(即数理统计技术、数据挖掘技术等清洗策略)对“脏”数据进行清洗,得到满足数据质量要求的数据。
需要注意的是,数据清洗的目的是解决“脏”数据问题,即不是将“脏”数据洗掉,而是将“脏”数据洗干净。干净的数据指的是满足质量要求的数据。
数据分析与可视化分析
Python中常会用到一些专门的库,如NumPy、SciPy、Pandas和Matplotlib。数据处理常用到NumPy、SciPy和Pandas,数据分析常用到Pandas和Scikit-Learn,数据可视化常用到Matplotlib,而对大规模数据进行分布式挖掘时则可以使用Pyspark来调用Spark集群的资源。
- NumPy官方文档:https://numpy.org/
- SciPy官方文档:https://scipy.org/
- Pandas官方文档:pandas documentation
- Matplotlib官方文档:Matplotlib - Visualization with Python
- Scikit-learn官方文档:scikit-learn: machine learning in Python
- Keras官方文档:the Python deep learning API
三、如何培养数据分析思维?
数据分析属于分析思维的一个子类,有专门的数据方法论,只有养成正确的分析思维才能做好数据分析。什么是好的分析思维,网上有张图是这样的:
第一个分析思维是依赖经验和直觉的线性思维,第二个分析思维则注重逻辑推导,属于结构化的思维。这两种思维也往往会导致不同的结果。
除了Excel、Tableau、SQL、Python 等工具技能的学习,另一个关键点则是数据分析思维的培养。大家在做数据分析之前需要构建分析框架、理清思路、学会运用常见的分析方法等结合具体业务进行分析。
这需要我们去做案例+看书来不断积累经验,形成自己的数据分析思维。
四、数据分析好书推荐
- 入门篇:《深入浅出数据分析》、《利用Python进行数据分析》、《笨方法学Python》
- 工具篇:《零基础学 SQL》、《R 语言实战》、《数据图形化,分析更给力》、《PPT,要你好看》、《金字塔原理》
- 统计篇:《深入浅出统计学》、《赤裸裸的统计学》
- 进阶篇:《精益数据分析》、《贝叶斯数据分析》
读者福利:知道你对Python感兴趣,便准备了这套python学习资料
👉[[CSDN大礼包:《python兼职资源&全套学习资料》免费分享]](安全链接,放心点击)
对于0基础小白入门:
如果你是零基础小白,想快速入门Python是可以考虑的。
一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以找到适合自己的学习方案
包括:Python激活码+安装包、Python web开发,Python爬虫,Python数据分析,人工智能、机器学习等习教程。带你从零基础系统性的学好Python!
一、Python学习大纲
Python所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。
二、Python必备开发工具
三、入门学习视频
四、实战案例
学好 Python 不论是就业还是做副业赚钱都不错,但要学会 Python 还是要有一个学习规划。最后大家分享一份全套的 Python 学习资料,给那些想学习 Python 的小伙伴们一点帮助!
一、Python所有方向的学习路线
Python所有方向路线就是把Python常用的技术点做整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。
二、学习软件
工欲善其事必先利其器。学习Python常用的开发软件都在这里了,给大家节省了很多时间。
三、全套PDF电子书
书籍的好处就在于权威和体系健全,刚开始学习的时候你可以只看视频或者听某个人讲课,但等你学完之后,你觉得你掌握了,这时候建议还是得去看一下书籍,看权威技术书籍也是每个程序员必经之路。
四、入门学习视频
我们在看视频学习的时候,不能光动眼动脑不动手,比较科学的学习方法是在理解之后运用它们,这时候练手项目就很适合了。
五、实战案例
光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
六、面试资料
我们学习Python必然是为了找到高薪的工作,下面这些面试题是来自阿里、腾讯、字节等一线互联网大厂最新的面试资料,并且有阿里大佬给出了权威的解答,刷完这一套面试资料相信大家都能找到满意的工作。
网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!