树状数组求逆序对的数量

本文介绍了如何利用树状数组解决逆序对问题。首先对元素进行排序和离散化,然后通过树状数组维护每个位置的累计出现次数,计算逆序对数量。核心思想在于利用树状数组的前缀和特性,快速获取小于等于某个值的元素个数。
摘要由CSDN通过智能技术生成
用树状数组求逆序对
分析

树状数组初始化为 0 。我们可以利用树状数组依次将输入的值所对应的位置改为 1。对于第i个数a[i]来说,若与其能组成逆序对则比它大的数会在i前边加入到数组,此时**1~a[i] 的前缀和 **即为小于等于a[i]的数的数量,i - sum(a[i])即为逆序对的数量。

对于此题来说,数组元素范围太大,建树的时候会报数组。但是元素数量较少且我们只需要知道元素间的相对大小即可。所以我们可以对*元素先排序,再进行离散化。*当然,也要记录初始顺序。

总结

  • 用树状数组依次将输入的值所对应的位置改为 1。
  • 对元素先排序,再进行离散化
  • i - sum(a[i])即为逆序对的数量。(sum(a[i])表示1~a[i]的前缀和)
code
#include<bits/stdc++.h>

using namespace std;

const int N = 1e6 + 10;
typedef long long ll;

int tr[N], a[N];
int n, m, k, t;

struct node
{
    int num, val;
}q[N];

bool cmp(node a, node b)
{
    if(a.val == b.val) return a.num < b.num;
    return a.val < b.val;
}

int lowbit(int x)
{
    return x & -x;
}

void add(int x, int c)
{
    for(int i = x; i <= n; i += lowbit(i)) tr[i] += c;
}

int sum(int x)
{
    int res = 0;
    for(int i = x; i ; i -= lowbit(i)) res += tr[i];
    return res;
}

int main()
{
    ll ans = 0;
    cin >> n;

    for(int i = 1; i <= n; i ++)
    {
        int u;
        cin >> u;
        q[i].val = u, q[i].num = i;
    }
    sort(q + 1, q + n + 1, cmp);

    for(int i = 1; i <= n; i ++) a[q[i].num] = i;
    for(int i = 1; i <= n; i ++)
    {
        add(a[i], 1);
        ans += (i - sum(a[i]));
    }

    cout << ans << "\n";

    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值