数学&算法芝士(才写了一点点)

质数

质数的筛选

埃氏筛法

扫描到每个x时,将x的倍数标记成合数。扫描到一个数而该数未被标记的时候,该数就是质数。可以发现,小于 x 2 x^2 x2的x的倍数之前已经被比x小的数标记过了,所以只需要从 x 2 x^2 x2开始标记就行了。时间复杂度: O ( N l o g l o g N ) O(NloglogN) O(NloglogN)

void prime(int n)
{
	memset(v,0,sizeof(v));//合数标记
	for(int i=2;i<=n;i++)
	{
		if(v[i])continue;
		//cout<<i<<endl;
		for(int j=i;j<=n/i;j++)
			v[i*j]=1;
	}
}

欧拉筛法

设数组v记录每个数的最小质因数,按照以下步骤维护v:

  1. 依次考虑2~N之间的每一个数i;
  2. 若v[i]=i,说明i是质数,把它保存下来;
  3. 扫描不大于v[i]的每一个质数p,令v[ip]=p。也就是在i的基础上累积一个质因子,因为p<=v[i],所以p就是合数ip的最小质因子。
    每个合数i*p只会被它的最小质因子p筛一次。总时间复杂度 O ( n ) O(n) O(n)
int v[N],prime[N];
void primes(int n)
{
	memset(v,0,sizeof(v));//最小质因子
	m=0;//质数数量
	for(int i=2;i<=n;i++)
	{
		if(v[i]==0)
			v[i]=i,prime[++m]=i;//i是质数
		//给当前的数i乘上一个质因子
		for(int j=1;j<=m;j++)
		{
			if(prime[j]>v[i]||prime[j]>n/i) break;
			//i有比prime[j]更小的质因子,或者超出n的范围,停止循环
			v[i*prime[j]]=prime[j];
			//prime[j]是合数i*prime[j]的最小质因子
		}
	}
}

质因数分解

196. 质数距离

#include<bits/stdc++.h>
#define llg long long
#define inf 1e9

using namespace std;

const int N=1e6+10;
llg v[N],prime[N];
int vis[N];

int main()
{
	llg l,r;
	while(~scanf("%lld%lld",&l,&r))
	{
		memset(prime,0,sizeof(prime));
		memset(vis,0,sizeof(vis));
		memset(v,0,sizeof(v));
		int n=sqrt(r);
		for(int i=2;i<=n;i++)
		{
			if(!v[i]) prime[++prime[0]]=i;
			if(v[i]) continue;
			for(int j=i;j<=n/i;j++)
				v[i*j]=1;
		}
		for(int i=1;i<=prime[0];i++)
		{
			//cout<<prime[i]<<' ';
			for(int j=l/prime[i];j*prime[i]<=r;j++)
			{
				if(prime[i]*j>=l&&j!=1)
					vis[prime[i]*j-l]=1;
			}
		}
        if(l==1) vis[0]=1;
		llg pre=0,minn=inf,a,b,maxn=0,c,d;
		for(llg i=l;i<=r;i++)
		{
			if(!vis[i-l])
			{
			    //cout<<i-l<<' ';
				if(pre)
				{
					if(i-pre<minn)
					{
						minn=i-pre;
						a=pre;
						b=i;
					} 
					if(i-pre>maxn)
					{
						maxn=i-pre;
						c=pre;
						d=i;
					} 
				}
				pre=i;
			}
		}
		if(minn==inf||maxn==0) cout<<"There are no adjacent primes."<<endl;
		else printf("%lld,%lld are closest, %lld,%lld are most distant.\n",a,b,c,d);
	}
    return 0;
}

197. 阶乘分解

#include<bits/stdc++.h>
#define llg long long
#define inf 0x3ffffff
using namespace std;

const int N=1e6+10;
int v[N],p[N];
llg c[N];

int main()
{
	int n;
	cin>>n;
	for(int i=2;i<=n;i++)
	{
		if(!v[i]) p[++p[0]]=i;
		if(v[i]) continue;
		for(int j=i;j<=n/i;j++)
			v[i*j]=1;
	}
	for(int i=1;i<=p[0];i++)
	{
		for(llg j=p[i];j<=n;j*=p[i])
			c[p[i]]+=(n/j);
		cout<<p[i]<<' '<<c[p[i]]<<endl;
	}
    return 0;
}

约数

198. 反素数

#include<bits/stdc++.h>
#define inf 0x3ffffff

using namespace std;

int a[]={2,3,5,7,11,13,17,19,23,29};
int n,ans=inf,maxn;

void dfs(int temp,int last,int now,int cnt)
//temp当前乘积,last上一个质因数的指数,now第几个质数,cnt约数个数 
{
	if(cnt>maxn||(cnt==maxn&&temp<ans))
	{
		maxn=cnt;
		ans=temp;
	}
	for(int i=1;i<=last;i++)
	{
		if((long long)temp*a[now]>n) break;
		temp*=a[now];
		dfs(temp,i,now+1,cnt*(i+1));
	}
	
}

int main()
{
	cin>>n;
	dfs(1,30,0,1);
	cout<<ans;
    return 0;
}

199. 余数之和

#include<bits/stdc++.h>
#define llg long long
#define inf 0x3ffffff
using namespace std;

llg n,k,ans;

int main()
{
	cin>>n>>k;
	ans=n*k;
	int l,r;
	for(l=1;l<=n;l=r+1) 
	{
        if(k/l== 0) break;
        r=min(k/(k/l),n);
        ans-=(k/l)*(l+r)*(r-l+1)/2;
    }
	cout<<ans;
    return 0;
}
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

春弦_

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值