- 博客(187)
- 收藏
- 关注
原创 Ubuntu20.04配置深度学习环境yolov5最简流程
提示Command 'nvidia-smi' not found, but can be installed with:说明你还没有安装显卡驱动。打开终端输入nvidia-smi,查看可以安装cuda的版本(低于这个等于这个版本都可以安装,高于11.3版本,建议安装11.3的)安装显卡驱动最简单方式:打开软件和更新ununtu软件-下载自-安装源改成国内。然后左面有一个附加驱动里面有许多专有的驱动程序,点击一个,接着点击应用更改。三、安装配置cuda、cudnn。解决方法:打开软件更新器更新一下。
2023-03-05 18:21:10
12088
8
原创 在香橙派5pro上的ubuntu22.04系统烧录镜像_2_12.23
脚本会检查根文件系统大小并创建一个大小合适的镜像文件,随后使用。以下都是在香橙派官网手册参考进行,有需要可以直接去官网看。OrangePi_5_RK3588S_用户手册_v2.2。令将系统数据复制到镜像文件中,具体过程如下所示。消息说明备份结束,镜像生成路径如下所示,脚本,可以自行从下面的仓库下载。即为可以烧录的镜像文件。
2025-12-23 11:31:20
159
原创 工控机为windows-拍照保存
本文介绍了一个使用OpenCV实现的简易摄像头图像采集程序。该程序通过鼠标左键点击捕获当前帧,并自动保存为带时间戳的JPEG文件到指定文件夹。主要功能包括:1) 创建"images_1"目录存储图像;2) 实时显示摄像头画面并叠加操作提示;3) 按q键退出程序;4) 显示已保存图像数量。程序采用全局变量存储当前帧,通过鼠标回调函数实现图像捕获,适合需要快速采集摄像头画面的应用场景。
2025-12-09 10:49:00
108
原创 ubuntu摄像头型号匹配不上_11-6
进入/home/orangepi/Desktop/smart_car_camera_code下。在/home/orangepi/Desktop/找到config.json修改。切忌如果在中文环境下,修改Desktop下代码;其中汉字桌面容易混淆。其中ocal4为图像检测摄像头、DICOTA 4K为ocr摄像头。DICOTA 4K其中查找摄像头型号。2、怎么查找该摄像头型号。
2025-11-06 16:53:56
209
原创 工控机_使用Windows10_自启动脚本_自动更新模型及py文件
在任务的"设置"选项卡中,您可以配置"如果任务失败,重新启动每隔:"的选项,这样可以在服务意外停止时尝试重启。测试任务是否能正常运行,在任务计划程序库中右键点击创建好的任务,选择"保存时,在记事本的"另存为"对话框中,"保存类型"请选择"点击"确定"保存任务,系统可能会提示输入当前用户的密码。或者在"开始"菜单搜索"任务计划程序"。填写BAT文件所在的目录,例如。在"开始任务"下拉菜单中选择":输入一个清晰的任务名,如。这能确保脚本执行时路径正确。建议在"高级设置"中勾选"在右侧"操作"栏,点击"
2025-10-16 10:31:20
295
原创 工控机_系统Windows10下载安装pycharm
直接下载就行现在不区分社区版和专业版;统一可以永久免费,外加一个月的专业版。一、pycharm下载安装。4、选择好后继续下一步。
2025-10-14 11:59:48
191
原创 工控机_Windows10系统部署yolov8环境
④下一步是选择你的安装路径,点击【Next】。同时记住你这个安装路径,接下来还会用到。③选择【All Users】,继续点击【Next】①双击打开下载好的安装程序,点击Next。1、下载anaconda,地址。(路径中不要出现中文或者空格)2、Anaconda的安装。一、安装yolov8环境。
2025-10-11 18:03:01
378
原创 orangepi文件、模型替换下载_12.12
Content-Length变化(文件大小改变)Last-Modified变化(修改时间改变)任一变化都会触发更新和添加、文件标识比较机制。ETag变化(文件内容改变)本地没有文件 → 立即下载。2、新建一个ti.py文件。场景2:文件标识变化。5、重新加载服务配置。
2025-10-10 10:00:13
300
原创 千问2.5-VL-7B的推理、微调、部署_笔记2
这里也使用ms-swift对qwen2.5和qwen2-vl进行自我认知微调和图像OCR微调,并对微调后的模型进行推理。ms-swift是魔搭社区官方提供的LLM工具箱,支持300+大语言模型和80+多模态大模型的微调到部署。ms-swift开源地址:https://github.com/modelscope/ms-swift。1、安装ms-swift和qwen2.5-vl的环境(上篇已经安装过qwen2.5-vl的环境这里不再重复)开始微调之前,确保你的环境已安装。这里主要记录微调过程。
2025-04-23 17:28:53
948
原创 部署InternVL3-8B
2、在下载前,请先通过如下命令安装ModelScope。3、下载单个文件到指定本地文件夹(以下载。到当前路径下“models”目录为例)
2025-04-21 11:31:59
1623
原创 PaddlePaddle的OCR模型转onnx-转rknn模型_笔记4
【代码】PaddlePaddle的OCR模型转onnx-转rknn模型_笔记4。
2025-02-17 11:47:44
2204
1
原创 FunASR的服务启动_2
在(funasr) sxj@sxj:~/FunASR/runtime/python/websocket$1、在root@e006a636961a:/workspace/FunASR/runtime#上篇文章有点乱重新整理一下!
2025-01-23 11:12:27
842
原创 记录一次Android Studio的下载、安装、配置
一、下载和安装 Android Studio1、百度搜索Android studio直接2、 下载成功后点击安装包进行安装:出现欢迎安装页面,点击next进行下一步接着出现如下全部打勾,进行下一步:3、这里不用打勾,直接点击安装 :4、完成安装:5、这里点击Cancel就可以了,这是因为我们还没有配置安装SDK路径所出现的警告:6、接下来欢迎!此向导将为您的开发环境设置Android Studio。
2025-01-10 11:13:45
2116
1
原创 PaddleOCR训练自己的私有数据集(包括标注、制作数据集、训练及应用)
cuda、cudnn、pytorch、conda、PPOCRLabel等。对每一个图片内容进行检测并改正;完成之后点击右下角确认。自动导出标记结果、自动重新识别、自动保存未提交变更。这次主要改进并优化之前写的一篇内容。记录自己使用的过程,方便后期使用。1、首先启用PPOCRLabel。2、接着点击左下角的自动标注。导出标记结果、导出识别结果。3、确认完成后点击左上角。文件,把下面三个都选上。未完后面接着更...
2024-12-25 18:40:45
4148
1
原创 ubuntu22.04安装PPOCRLabel
5、启动 【KIE 模式】,用于打【检测+识别+关键字提取】场景的标签。2、这个比较重要需要选择适合自己电脑版本。4、接着安装PPOCRLabel。ubuntu22.04系统。
2024-12-24 14:04:49
789
原创 Fay环境安装及使用
依照说明修改 `./system.conf` 文件。打开fay项目下的system.conf文件。流程还没有走完后面会更新,建议参考其它人的。安装完成之后运行api看看是否有报错。3、安装pytorch 3D。我的准备装cuda12.4。
2024-12-16 12:00:36
1478
原创 yolov8训练数据集_快速替换类别
results = model.train(data="/home/sxj/yolov8-2/data/coco.yaml", epochs=200,batch=1,device='0')#训练模型。3、依次运行python split_train_val.py及生成data/ImageSets/Main里边生成四个txt。这个是已经跑成功yolov8方便替换其它数据集写的,其它第一次跑yolov8的不要看这个。2、修改coco.yaml、voc_label.py的标签,标签顺序不能错。
2024-12-11 16:47:57
658
原创 ubuntu22.04.3系统重装_yolov8的深度学习环境安装(cuda12.4)
提示Command'nvidia-smi'notfound,butcanbeinstalledwith:说明你还没有安装显卡驱动。完成后重启在输入nvidia-smi就可以看到电脑可以安装cuda的最高版本号。进入搜狗forlinux官网下载搜狗输入法,下载x86版本。查看可以安装cuda的版本(低于这个或等于这个版本都可以安装)这时如果弹出没有可用的附加驱动或附加驱动为空。这里我们选择的是8.8.1版本的。安装命令:打开终端直接输入。其它的找适合自己版本就行。我的是cuda12.4。
2024-11-29 11:02:02
6448
原创 yolov8训练pt模型转换为rknn模型_部署在RK3588上--整个流程_笔记1
yolov8的多卡训练其实很简单,不需要使用繁琐的命令行指令,仅需把device='0,1,2,3’即可,注意一定要加\和引号。至此数据集的准备已经就绪,索引文件在data目录下的train.txt/val.txt/test.txt。使用如下命令,即可完成对新数据的预测,source需要指定为自己的图像路径,或者摄像头(0)进入data/文件夹,新建coco.yaml,内容如下,注意txt需要使用绝对路径。images目录下存放数据集的图片文件。使用如下命令,即可完成训练模型的导出。
2024-11-25 15:23:40
3878
3
原创 yolov5训练pt模型转换为rknn模型_部署在RK3588上--整个流程
3.将onnx模型使用rknn-toolkit2中onnx文件夹的test.py转换为rknn模型;预训练模型yolov5s.pt,需要我们自行下载,在releasesl链接中找到。2.将pt模型使用yolov5工程中的export.py转换为onnx模型;4.在板子上使用rknpu2工具调用rknn模型,实现NPU推理加速。1.使用正确版本(v5.0)的yolov5进行训练得到pt模型;1、一块RK3588的开发板(上面是Ubuntu环境)2、PC电脑(上面是Ubuntu环境)
2024-11-22 15:04:24
1196
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅