RSA加密解密算法原理以及实现_rsa简介及源码实现(3)

  • [4、选择一个与

φ

(

n

)

\varphi(n)

φ(n)互质的整数e](#4varphine_34)

  • [5、计算出e对于

φ

(

n

)

\varphi(n)

φ(n)的模反元素d](#5evarphind_37)


前言

从古至今,如何用最有效的加密手段保护信息的安全性使之不被窃取、篡改或者破坏都是人们在信息传播中普遍关注的重大问题。最古老的文件加密手段莫过于对称加密,什么是对称加密,打个比方,有一个商人需要给合作伙伴送一批贵重的货物,他便将货物放在一个设置好密码的箱子中,这个密码只有商人知道,同时他又将设置好的密码提前告知合作伙伴,货物送达后,合作伙伴便可以用被告知的密码打开箱子取出货物。即用一种方法加密, 用同一种方法解密, 即为对称加密。对称加密从古至今都是比较广泛使用的一种加密方式,比如在宋朝就将代码法用于军事保密文件的传输,简而言之,比如双方约定某一本书,根据书中的字所在位子,比如“20页第2行第9个字”,破译的时候只要对照好,就能解码。如果不知道双方约定的解码书本,根本无法破解。这种方式现在还管用。比如在谍战片中,情报人员发出的电报,需要用对应的密码本来解译,如何密码本落入到地方手中,后果不堪设想。但是对称加密缺点在于,通过对称加密方法进行加密后,需要告知接收方加密方法才能解密,而将加密方法传输给接受方这一过程中,充满了各种泄密的可能。比如说在战争中,一旦密码本在传输的过程中被敌方截获,那么所有的电报内容都会被地方破解,以至于影响最终战争胜利的走向。所以,对称加密的安全性,最首先取决于加密方式的保密性,其次才是密码破译的难度。 如何能够消除了对称加密中用户交换密钥的需要的同时也能保证其保密性?因此,诞生的非对称加密非对称加密算法需要两个密钥:公开密钥 (publickey:简称公钥) 和 私有密钥 (privatekey:简称私钥). 公钥与私钥是一 一对应的, 如果用公钥对数据进行加密, 只有用对应的私钥才能解密. 因为加密和解密使用的是两个不同的密钥, 所以这种算法叫作非对称加密算法. 基本过程为:甲方生成一对密钥与公钥, 并将公钥公开, 需要向甲方发送信息的其他角色(乙方, 丙方等) 使用甲方公开的公钥对机密信息进行加密后再发送给甲方. 甲方再用自己私钥对加密后的信息进行解密.甲方想要回复乙方时正好相反, 使用乙方公开的公钥对数据进行加密,同理,乙方使用自己的私钥来进行解密.本文中介绍非对称加密算法中的一种------RSA加密解密算法


一、RSA加密算法是什么?

RSA是1977年由罗纳德·李维斯特(Ron Rivest), 阿迪·萨莫尔(Adi Shamir)和 伦纳德·阿德曼(Leonard Adleman)一起提出的. 当时他们三人都在麻省理工学院工作. RSA就是他们三人姓氏开头字母拼在一起组成的.百度百科

加密过程

1、选择一对不相等且足够大的质数

选择一对不相等且足够大的质数,我们将它描述为p和q。

2、计算p、q的乘积

n=p*q

3、计算n的欧拉函数

φ

(

n

)

=

(

p

1

)

(

q

1

)

\varphi(n)=(p-1)*(q-1)

φ(n)=(p−1)∗(q−1)

这个公式是如何得到的?那么就要从以下几个概念入手。

互质:如果两个整数的公约数只有1,此时它们叫做互质整数。

欧拉函数:欧拉函数是小于n的正整数中与n互质的数的数目。例如,与6互质且小于6的正整数有两个,分别是1和5,则

φ

(

6

)

=

2

\varphi(6)=2

φ(6)=2。如果n为质数,那么

φ

(

n

)

=

n

1

\varphi(n)=n-1

φ(n)=n−1,因为质数在大于1的自然数中,除了1和它本身以外不会再有其他因数的自然数。

此时如果n可以分解成2个互质的整数之积,那么n的欧拉函数等于这两个因子的欧拉函数之积。即若n=p*q,且p、q互质,则

φ

(

n

)

=

φ

(

p

q

)

=

φ

(

p

)

φ

(

q

)

\varphi(n)=\varphi(p*q)=\varphi§*\varphi(q)

φ(n)=φ(p∗q)=φ§∗φ(q)=(p-1)*(q-1)。

证明:p,2p,3p,…,(q−1)∗p有q−1个数整除pq,同理q,2q,3q,…,(p−1)∗q有p−1个数可以整除pq,再加上pq本身能整除pq,那么丢掉这些数剩余的数就与pq互质,一共有pq− (q−1+p−1+1) =(p−1)(q−1) 。

4、选择一个与

φ

(

n

)

\varphi(n)

φ(n)互质的整数e

1<e<

φ

(

n

)

\varphi(n)

φ(n)

5、计算出e对于

φ

(

n

)

\varphi(n)

φ(n)的模反元素d

de mod

φ

(

n

)

\varphi(n)

φ(n) =1

在这里解释下什么是模反元素。

如果两个正整数e和

φ

(

n

)

\varphi(n)

φ(n)互质,那么一定可以找到一个整数d,使得ed-1被

φ

(

n

)

\varphi(n)

φ(n)整除,或者说ed除以

φ

(

n

)

\varphi(n)

φ(n)所得的余数为1,此时,d就叫做e的模反元素。
也就是说在e和

φ

(

n

)

\varphi(n)

φ(n)已知的情况下,d只要满足ed-1=k

φ

(

n

)

\varphi(n)

φ(n),k为任意整数,d便是e的模反元素。同时也可得到,e的模反元素d并不是唯一的。
例如,e=3,

φ

(

n

)

=

11

\varphi(n)=11

φ(n)=11,则d=4

±

\pm

自我介绍一下,小编13年上海交大毕业,曾经在小公司待过,也去过华为、OPPO等大厂,18年进入阿里一直到现在。

深知大多数网络安全工程师,想要提升技能,往往是自己摸索成长,但自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前!

因此收集整理了一份《2024年网络安全全套学习资料》,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友。
img
img
img
img
img
img

既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,基本涵盖了95%以上网络安全知识点,真正体系化!

由于文件比较大,这里只是将部分目录大纲截图出来,每个节点里面都包含大厂面经、学习笔记、源码讲义、实战项目、讲解视频,并且后续会持续更新

如果你觉得这些内容对你有帮助,可以添加VX:vip204888 (备注网络安全获取)
img

写在最后

在结束之际,我想重申的是,学习并非如攀登险峻高峰,而是如滴水穿石般的持久累积。尤其当我们步入工作岗位之后,持之以恒的学习变得愈发不易,如同在茫茫大海中独自划舟,稍有松懈便可能被巨浪吞噬。然而,对于我们程序员而言,学习是生存之本,是我们在激烈市场竞争中立于不败之地的关键。一旦停止学习,我们便如同逆水行舟,不进则退,终将被时代的洪流所淘汰。因此,不断汲取新知识,不仅是对自己的提升,更是对自己的一份珍贵投资。让我们不断磨砺自己,与时代共同进步,书写属于我们的辉煌篇章。

需要完整版PDF学习资源私我

一个人可以走的很快,但一群人才能走的更远。不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎扫码加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!
img

课程,基本涵盖了95%以上网络安全知识点,真正体系化!**

由于文件比较大,这里只是将部分目录大纲截图出来,每个节点里面都包含大厂面经、学习笔记、源码讲义、实战项目、讲解视频,并且后续会持续更新

如果你觉得这些内容对你有帮助,可以添加VX:vip204888 (备注网络安全获取)
[外链图片转存中…(img-zqMPUuCJ-1712545302988)]

写在最后

在结束之际,我想重申的是,学习并非如攀登险峻高峰,而是如滴水穿石般的持久累积。尤其当我们步入工作岗位之后,持之以恒的学习变得愈发不易,如同在茫茫大海中独自划舟,稍有松懈便可能被巨浪吞噬。然而,对于我们程序员而言,学习是生存之本,是我们在激烈市场竞争中立于不败之地的关键。一旦停止学习,我们便如同逆水行舟,不进则退,终将被时代的洪流所淘汰。因此,不断汲取新知识,不仅是对自己的提升,更是对自己的一份珍贵投资。让我们不断磨砺自己,与时代共同进步,书写属于我们的辉煌篇章。

需要完整版PDF学习资源私我

一个人可以走的很快,但一群人才能走的更远。不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎扫码加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!
[外链图片转存中…(img-ZUzJCxDa-1712545302988)]

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值