《PyTorch深度学习实践》-P6逻辑斯蒂回归

逻辑斯蒂回归是做分类用的,输出是概率的分布

复习:线性回归  

 回归与分类的区别:

分类输出y_hat可以是通过的概率(【0,1】),也可以是结果,通过或挂科。

 分类输出为概率,在训练时,logistic要把输出值从是实数空间映射到【0,1】

 在pytorch中把logistic 叫做sigmoid

Logstic回归模型:

论文中常把logistic函数写成\sigma(x)

损失函数:

线性回归模型中loss=(y_hat-y)**2在几何上表示两点距离差异

logistic回归模型中,输出是概率的分别,loss要比较概率之间的分布差异,(KL散度,cross-entrpoy交叉熵)

交叉熵举例:

比较D分布和T分布差异性的大小,越大越好

 loss越小越好

 BCE二分类损失函数如上

y是样本真实值,y_hat是预测值,y=1时22,y_hat趋近于一则损失越小,否则越大

mini-batch loss 把BCE加起来求均值即可

linear函数与线性回归函数相同,因此code也相同,因为\sigma里没有参数,也不需要更新,直接在linear后加一个sigmod,最前面加一份functional即可

 

 损失不同:从原来的MSE编程BCE(binary cross entropy)

完整代码:

1 prepare dataset

2designmodel using Class

3construct loss and optimizer 

4training cycle

 大部分网络模型都是这四步:

 

 代码:

import torch
import torch.nn.functional as F
import numpy as np
import matplotlib.pyplot as plt
#prepare dataset
x_data = torch.Tensor([[1.0], [2.0], [3.0]])
y_data = torch.Tensor([[0], [0], [1]])

#design model using Class
class LogisticRegressionModel(torch.nn.Module):
    def __init__(self):
        super(LogisticRegressionModel, self).__init__()
        self.linear = torch.nn.Linear(1, 1)

    def forward(self, x):
        y_pred = F.sigmoid(self.linear(x))
        return y_pred
model = LogisticRegressionModel()#创建一个LogisticRegressioMoel类的实例


#construct loss and optimizer

#BCELoss类参数:size_average=True/False是否求均值、reduction=True/False是否降维
criterion = torch.nn.BCELoss(size_average=False)
#优化器
optimizer = torch.optim.SGD(model.parameters(), lr=0.01)

#trainging cycle
for epoch in range(1000):
    y_pred = model(x_data)
    loss = criterion(y_pred, y_data)

    optimizer.zero_grad()  # 在反向传播之前一定要释放梯度
    loss.backward()  # 反向传播Autograd
    optimizer.step()  # update

    if (epoch % 100 == 0):  #output epoch and loss
        print('Epoch =' + '\t' + str(epoch) + '\t' + 'Loss =' + '\t' + str(format(loss.item(), '.4f')))
        print('')
        print('')

x = np.linspace(0, 10, 200) #0-10之间平均取200个点
x_test = torch.Tensor(x).view((200, 1))
y_test = model(x_test)
y = y_test.data.numpy()
plt.plot(x, y)
plt.plot([0, 10], [0.5, 0.5], c='r')
plt.xlabel('Hours')
plt.ylabel('Probability of Pass')
plt.grid(True)
plt.show()

输出:


Epoch =	0	Loss =	2.6060


Epoch =	100	Loss =	1.9397


Epoch =	200	Loss =	1.7697


Epoch =	300	Loss =	1.6271


Epoch =	400	Loss =	1.5065


Epoch =	500	Loss =	1.4037


Epoch =	600	Loss =	1.3155


Epoch =	700	Loss =	1.2390


Epoch =	800	Loss =	1.1721


Epoch =	900	Loss =	1.1133


  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值