✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码获取及仿真咨询内容私信。
🔥 内容介绍
一、引言:时序回归模型的 “黑箱困境” 与破局思路
在金融市场预测、环境污染物浓度预估、工业设备状态监测等时序回归场景中,传统模型(如 ARIMA、单一神经网络)往往难以兼顾 “预测精度” 与 “可解释性”。随着深度学习技术的发展,CNN-BiGRU 组合模型凭借卷积神经网络(CNN)的局部特征提取能力与双向门控循环单元(BiGRU)的双向时序依赖捕捉优势,在复杂时序数据回归任务中表现突出。
然而,深度学习模型固有的 “黑箱特性” 成为其落地应用的关键瓶颈 —— 模型仅能输出预测结果,无法解释 “哪些特征主导预测”“特征如何影响预测趋势”,导致在医疗诊断、工业安全等高可靠性要求领域难以推广。SHAP(SHapley Additive exPlanations)分析方法的出现为破局提供了新思路:基于合作博弈论中的 Shapley 值,通过量化每个特征对预测结果的边际贡献,从全局和局部双重视角解析模型决策过程,为 CNN-BiGRU 回归模型赋予 “可解释性”,推动其在高风险场景中的实用化。
二、CNN-BiGRU 回归模型:时序特征的 “提取 - 建模” 双引擎
2.1 核心组件原理与协同优势
(1)CNN:时序数据的局部关键特征提取器
时序数据(如某地区逐小时 PM2.5 浓度、设备运行时的振动信号)中,隐含着与预测目标强相关的局部特征(如 PM2.5 浓度突变前的湿度骤升、设备故障前的振动频率异常段)。CNN 通过 1D 卷积核的滑动窗口操作,可自动捕捉这些局部关联特征:
- 卷积层:以 3-5 步长的 1D 卷积核扫描时序数据,通过权重共享减少参数数量,提取如 “连续 3 个时间步的温度变化趋势” 等局部特征;
- 池化层:采用最大池化或平均池化压缩特征维度,保留关键局部信息的同时,降低后续模型计算复杂度,避免过拟合。
在时序回归任务中,CNN 的核心价值在于:无需人工设计特征工程,直接从原始时序数据中挖掘隐藏的局部模式,为后续时序建模提供高质量特征输入。
(2)BiGRU:双向时序依赖的深度捕捉工具
传统 GRU 仅能从 “过去到未来” 的单向视角学习时序依赖,而实际场景中,预测目标往往受 “过去” 与 “未来” 双向信息影响(如预测某时刻股票价格,需同时参考历史交易数据与未来政策预期的市场提前反应)。BiGRU 通过并行设置 “正向 GRU” 与 “反向 GRU”,实现双向时序信息融合:
- 正向 GRU:从时序起点到终点,学习 “历史信息对当前预测的影响”(如前 7 天的 PM2.5 浓度对今日浓度的影响);
- 反向 GRU:从时序终点到起点,学习 “未来信息对当前预测的回溯影响”(如未来 3 天的气象预报对今日 PM2.5 浓度预测的修正);
- 特征拼接:将双向 GRU 的输出特征向量拼接,形成包含 “过去 - 未来” 完整时序信息的特征表示,为回归预测提供更全面的时序依据。
相较于单一 GRU,BiGRU 在长周期时序回归任务中(如月度电力负荷预测)的预测误差可降低 15%-25%,尤其适用于存在双向时序关联的场景。
(3)CNN 与 BiGRU 的协同机制
CNN-BiGRU 模型形成 “局部特征提取 - 双向时序建模” 的递进式架构:
- CNN 先对原始时序数据进行 “局部特征筛选”,过滤噪声干扰,提取如 “设备振动信号中的异常频率段” 等关键局部特征;
- BiGRU 接收 CNN 输出的局部特征序列,从双向视角学习 “局部特征随时间的变化规律”(如异常振动频率段在故障前后的出现频次变化);
- 最终通过全连接层将 BiGRU 输出的时序特征映射为连续型预测结果(如设备剩余寿命天数、未来 24 小时的电力负荷值)。
2.2 模型架构与数据流向(以工业设备振动信号回归预测为例)
以 “基于设备逐分钟振动信号预测下一小时故障风险指数”(回归任务)为例,CNN-BiGRU 模型的具体数据流向如下:
- 输入层:接收时序数据矩阵(维度:时间步 × 特征数,如 60 分钟 ×3 个特征:振动频率、振幅、温度);
- CNN 模块:1 层 1D 卷积层(卷积核大小 3,输出通道数 64)提取局部特征,经 ReLU 激活函数引入非线性,1 层最大池化层(池化窗口大小 2)压缩维度,输出特征维度为 30 分钟 ×64;
- BiGRU 模块:2 层 BiGRU 单元(每层隐藏层维度 128),正向 GRU 学习前 30 分钟特征的时序依赖,反向 GRU 学习后 30 分钟特征的回溯影响,输出双向特征拼接后的维度为 30 分钟 ×256;
- 全局平均池化层:对 BiGRU 输出的时序特征进行全局平均,得到 1×256 的全局时序特征向量;
- 输出层:2 层全连接层(隐藏层维度 64,输出层维度 1),通过 Sigmoid 激活函数将预测结果映射至 [0,1] 区间,即设备下一小时的故障风险指数。
⛳️ 运行结果






📣 部分代码
%% 导入数据(时间序列的单列数据)
result = xlsread('data.xlsx');
%% 数据分析
num_samples = length(result); % 样本个数
kim = 15; % 延时步长(kim个历史数据作为自变量)
zim = 1; % 跨zim个时间点进行预测
%% 划分数据集
for i = 1: num_samples - kim - zim + 1
res(i, :) = [reshape(result(i: i + kim - 1), 1, kim), result(i + kim + zim - 1)];
end
%% 数据集分析
outdim = 1; % 输出
num_size = 0.7; % 训练集占数据集比例
num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim; % 输入特征维度
%% 划分训练集和测试集
P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);
P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
🔗 参考文献
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌟 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位、冷链、时间窗、多车场等、选址优化、港口岸桥调度优化、交通阻抗、重分配、停机位分配、机场航班调度、通信上传下载分配优化
🌟 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌟图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌟 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻、公交车时间调度、水库调度优化、多式联运优化
🌟 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划、
🌟 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌟 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌟电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电、电/冷/热负荷预测、电力设备故障诊断、电池管理系统(BMS)SOC/SOH估算(粒子滤波/卡尔曼滤波)、 多目标优化在电力系统调度中的应用、光伏MPPT控制算法改进(扰动观察法/电导增量法)、电动汽车充放电优化、微电网日前日内优化、储能优化、家庭用电优化、供应链优化
🌟 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌟 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌟 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇

被折叠的 条评论
为什么被折叠?



