二分——跳石头

该篇文章讨论了在编程竞赛中解决关于移除岩石以增加跳石比赛最短距离的问题,涉及算法设计和数据结构应用。
摘要由CSDN通过智能技术生成

[NOIP2015 提高组] 跳石头

题目来源:https://www.luogu.com.cn/problem/P2678

题目背景

NOIP2015 Day2T1

题目描述

一年一度的“跳石头”比赛又要开始了!

这项比赛将在一条笔直的河道中进行,河道中分布着一些巨大岩石。组委会已经选择好了两块岩石作为比赛起点和终点。在起点和终点之间,有 N N N 块岩石(不含起点和终点的岩石)。在比赛过程中,选手们将从起点出发,每一步跳向相邻的岩石,直至到达终点。

为了提高比赛难度,组委会计划移走一些岩石,使得选手们在比赛过程中的最短跳跃距离尽可能长。由于预算限制,组委会至多从起点和终点之间移走 M M M 块岩石(不能移走起点和终点的岩石)。

输入格式

第一行包含三个整数 L , N , M L,N,M L,N,M,分别表示起点到终点的距离,起点和终点之间的岩石数,以及组委会至多移走的岩石数。保证 L ≥ 1 L \geq 1 L1 N ≥ M ≥ 0 N \geq M \geq 0 NM0

接下来 N N N 行,每行一个整数,第 i i i 行的整数 D i   ( 0 < D i < L ) D_i\,( 0 < D_i < L) Di(0<Di<L), 表示第 i i i 块岩石与起点的距离。这些岩石按与起点距离从小到大的顺序给出,且不会有两个岩石出现在同一个位置。

输出格式

一个整数,即最短跳跃距离的最大值。

样例 #1

样例输入 #1

25 5 2 
2
11
14
17 
21

样例输出 #1

4

提示

输入输出样例 1 说明

将与起点距离为 2 2 2 14 14 14 的两个岩石移走后,最短的跳跃距离为 4 4 4(从与起点距离 17 17 17 的岩石跳到距离 21 21 21 的岩石,或者从距离 21 21 21 的岩石跳到终点)。

数据规模与约定

对于 20 % 20\% 20%的数据, 0 ≤ M ≤ N ≤ 10 0 \le M \le N \le 10 0MN10
对于 50 % 50\% 50% 的数据, 0 ≤ M ≤ N ≤ 100 0 \le M \le N \le 100 0MN100
对于 100 % 100\% 100% 的数据, 0 ≤ M ≤ N ≤ 50000 , 1 ≤ L ≤ 1 0 9 0 \le M \le N \le 50000,1 \le L \le 10^9 0MN50000,1L109

思路分析

这道题很经典,也很有意思,这道题是拿走石头,路标设置那道题是放石头,细节,对于拿石头我们可以从不相邻的位置拿,但放石头必须得相邻的来,为什么?因为从任意位置拿走石头都会使得最小距离变大,而放石头只有放相邻的位置才会使最大的距离变小。

代码

#include<iostream>

using namespace std;

const int N = 5e5+10;

int w[N];
int L,n,m;

bool check(int x){//我们这里的x指的是我们给定的最短跳跃距离x,然后伴奏数最少
    int cnt=0;
    int i=0,now=0;
    while(i<n+1){
        i++;
        if(w[i]-w[now]<x){
            cnt++;//搬走的石头数目
        }else{
            now=i;
        }
    }
    if(cnt>m)return false;
    return true;
}

int main(){
    cin>>L>>n>>m;
    
    for(int i=1;i<=n;i++)cin>>w[i];
    w[n+1]=L;//终点
    
    int l=0,r=L+1;
    while(l+1!=r){
        int mid=(l+r)>>1;
        if(check(mid))l=mid;
        else r=mid;
    }
    cout<<l;
    
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

green qwq

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值