常见优化技巧——直播获奖

[CSP-J2020] 直播获奖

题目描述

NOI2130 即将举行。为了增加观赏性,CCF 决定逐一评出每个选手的成绩,并直播即时的获奖分数线。本次竞赛的获奖率为 w % w\% w%,即当前排名前 w % w\% w% 的选手的最低成绩就是即时的分数线。

更具体地,若当前已评出了 p p p 个选手的成绩,则当前计划获奖人数为 max ⁡ ( 1 , ⌊ p × w % ⌋ ) \max(1, \lfloor p \times w \%\rfloor) max(1,p×w%⌋),其中 w w w 是获奖百分比, ⌊ x ⌋ \lfloor x \rfloor x 表示对 x x x 向下取整, max ⁡ ( x , y ) \max(x,y) max(x,y) 表示 x x x y y y 中较大的数。如有选手成绩相同,则所有成绩并列的选手都能获奖,因此实际获奖人数可能比计划中多。

作为评测组的技术人员,请你帮 CCF 写一个直播程序。

输入格式

第一行有两个整数 n , w n, w n,w。分别代表选手总数与获奖率。
第二行有 n n n 个整数,依次代表逐一评出的选手成绩。

输出格式

只有一行,包含 n n n 个非负整数,依次代表选手成绩逐一评出后,即时的获奖分数线。相邻两个整数间用一个空格分隔。

样例 #1

样例输入 #1

10 60
200 300 400 500 600 600 0 300 200 100

样例输出 #1

200 300 400 400 400 500 400 400 300 300

样例 #2

样例输入 #2

10 30
100 100 600 100 100 100 100 100 100 100

样例输出 #2

100 100 600 600 600 600 100 100 100 100

提示

样例 1 解释


数据规模与约定

各测试点的 n n n 如下表:

测试点编号 n = n= n=
1 ∼ 3 1 \sim 3 13 10 10 10
4 ∼ 6 4 \sim 6 46 500 500 500
7 ∼ 10 7 \sim 10 710 2000 2000 2000
11 ∼ 17 11 \sim 17 1117 1 0 4 10^4 104
18 ∼ 20 18 \sim 20 1820 1 0 5 10^5 105

对于所有测试点,每个选手的成绩均为不超过 600 600 600 的非负整数,获奖百分比 w w w 是一个正整数且 1 ≤ w ≤ 99 1 \le w \le 99 1w99


提示

在计算计划获奖人数时,如用浮点类型的变量(如 C/C++ 中的 floatdouble,Pascal 中的 realdoubleextended 等)存储获奖比例 w % w\% w%,则计算 5 × 60 % 5 \times 60\% 5×60% 时的结果可能为 3.000001 3.000001 3.000001,也可能为 2.999999 2.999999 2.999999,向下取整后的结果不确定。因此,建议仅使用整型变量,以计算出准确值。

思路分析

这道题类似于动态维护中位数的那道题动态中位数,我们可以采取对顶堆进行维护:


**总结:对顶堆的维护是请添加图片描述
**
我们可以理解:大的在下,小的在上,然后大的总会比小的多1个或者相等(就可以理解成将它顺时针旋转90度,然后左边的比右边多1个,我感觉可以类似偶数的中位数那样)

代码

// //这道题就是模拟

// #include<iostream>
// #include<algorithm>

// using namespace std;

// const int N = 1e5+10;

// int w[N];
// int n,p;

// int main(){
//     scanf("%d%d",&n,&p);
//     for(int i=1;i<=n;i++)scanf("%d",&w[i]);
    
//     for(int i=1,j=1;i<=n;i++){
//         int tot=max(1,i*p/100);
//         int temp[N]={0};
//         int maxv=-1;
//         for(int k=1;k<=i;k++){
//             temp[k]=w[k];
//         }
//         sort(temp+1,temp+1+i);
//         printf("%d ",temp[i-tot+1]);
//     }
//     return 0;
// }
//以上超时

//对顶堆排序

#include<iostream>
#include<algorithm>
#include<queue>

using namespace std;
//小顶堆在上,大顶堆在下
priority_queue<int> da;//大顶堆
priority_queue<int,vector<int>,greater<int>> xiao;

int n,w,tot,num;

void q1(){
    if(xiao.size()<tot){
        xiao.push(da.top());
        da.pop();
    }
    if(xiao.size()>tot){
        da.push(xiao.top());
        xiao.pop();
    }
}

void push(int num){
    if(num>=da.top())xiao.push(num);
    else da.push(num);
    q1();//动态调整
}

int main(){
    cin>>n>>w;
    da.push(0);//避免边界
    for(int i=1;i<=n;i++){
        tot=max(1,i*w/100);
        cin>>num;
        push(num);
        cout<<xiao.top()<<" ";
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

green qwq

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值