树形DP——[CTSC1997]选课

[CTSC1997] 选课

题目来源

题目描述

在大学里每个学生,为了达到一定的学分,必须从很多课程里选择一些课程来学习,在课程里有些课程必须在某些课程之前学习,如高等数学总是在其它课程之前学习。现在有 N N N 门功课,每门课有个学分,每门课有一门或没有直接先修课(若课程 a 是课程 b 的先修课即只有学完了课程 a,才能学习课程 b)。一个学生要从这些课程里选择 M M M 门课程学习,问他能获得的最大学分是多少?

输入格式

第一行有两个整数 N N N , M M M 用空格隔开。( 1 ≤ N ≤ 300 1 \leq N \leq 300 1N300 , 1 ≤ M ≤ 300 1 \leq M \leq 300 1M300 )

接下来的 N N N 行,第 I + 1 I+1 I+1 行包含两个整数 $k_i $和 s i s_i si, k i k_i ki 表示第I门课的直接先修课, s i s_i si 表示第I门课的学分。若 k i = 0 k_i=0 ki=0 表示没有直接先修课( 1 ≤ k i ≤ N 1 \leq {k_i} \leq N 1kiN , 1 ≤ s i ≤ 20 1 \leq {s_i} \leq 20 1si20)。

输出格式

只有一行,选 M M M 门课程的最大得分。

样例 #1

样例输入 #1

7  4
2  2
0  1
0  4
2  1
7  1
7  6
2  2

样例输出 #1

13

思路分析

这道题是很典型性的树上背包问题,有关树上背包的有关的典型例题为:P2015 二叉苹果树,个人觉得这个解题很不错

细节

  • 树上背包问题的dfs一般不需要用fa数组进行排除(注意:只要单向边才有这个性质),因为有可能后面的比前面的更优。
  • 树上背包的背包在线性背包看来是有依赖背包问题的简化版本,因此在树上背包我们用f[i][j]表示以i为根节点,选j条边(类似背包的体积)的最大价值,于是每一棵子树看出一组背包,若需要选择该子树son,则根结点u到子树son的边一定用上,因此能用上的总边数一定减1,总共可以选择j条边时,当前子树son分配的最大边数是j - 1这里为什么要-1呢?因为必须要选根节点到其他物品组的那条边),对于任意一棵子树有f[i][j]=max(f[i][j],f[son][k]+f[i][k-j-1]+w[i])
  • 拓展:
    树形dp分为两大题型:边作为体积,顶点的数量或者顶点的权值作为体积。
    在这里插入图片描述
  • 本道题特殊就特殊在我们可以建立一个超级原点(虚拟原点),这样就更好做了,就如图:
    在这里插入图片描述

代码

#include<iostream>
#include<algorithm>
#include<cstring>

using namespace std;

const int N = 310,M = 2*N;

int e[M],ne[M],w[M],h[N],idx;
int f[M][M];
int o[N],cnt;
int n,V;

void add(int a,int b,int c){
    e[idx]=b,w[idx]=c,ne[idx]=h[a],h[a]=idx++;
}

void dfs(int u){
    for(int i=h[u];~i;i=ne[i]){
        int p=e[i];
        
        dfs(p);
        
        for(int j=V;j;j--){
            for(int k=0;k<=j-1;k++){
                f[u][j]=max(f[u][j],f[p][k]+f[u][j-k-1]+w[i]);
            }
        }
    }
}

int main(){
    cin>>n>>V;
    
    memset(h,-1,sizeof h);
    //建立一个超级原点
    for(int i=1;i<=n;i++){
        int a,b;
        cin>>a>>b;
        add(a,i,b);
    }
    
    dfs(0);
    
    cout<<f[0][V];
    return 0;
    
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

green qwq

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值