[CTSC1997] 选课
题目描述
在大学里每个学生,为了达到一定的学分,必须从很多课程里选择一些课程来学习,在课程里有些课程必须在某些课程之前学习,如高等数学总是在其它课程之前学习。现在有 N N N 门功课,每门课有个学分,每门课有一门或没有直接先修课(若课程 a 是课程 b 的先修课即只有学完了课程 a,才能学习课程 b)。一个学生要从这些课程里选择 M M M 门课程学习,问他能获得的最大学分是多少?
输入格式
第一行有两个整数 N N N , M M M 用空格隔开。( 1 ≤ N ≤ 300 1 \leq N \leq 300 1≤N≤300 , 1 ≤ M ≤ 300 1 \leq M \leq 300 1≤M≤300 )
接下来的 N N N 行,第 I + 1 I+1 I+1 行包含两个整数 $k_i $和 s i s_i si, k i k_i ki 表示第I门课的直接先修课, s i s_i si 表示第I门课的学分。若 k i = 0 k_i=0 ki=0 表示没有直接先修课( 1 ≤ k i ≤ N 1 \leq {k_i} \leq N 1≤ki≤N , 1 ≤ s i ≤ 20 1 \leq {s_i} \leq 20 1≤si≤20)。
输出格式
只有一行,选 M M M 门课程的最大得分。
样例 #1
样例输入 #1
7 4
2 2
0 1
0 4
2 1
7 1
7 6
2 2
样例输出 #1
13
思路分析
这道题是很典型性的树上背包问题,有关树上背包的有关的典型例题为:P2015 二叉苹果树,个人觉得这个解题很不错。
细节
- 树上背包问题的dfs一般不需要用fa数组进行排除(注意:只要单向边才有这个性质),因为有可能后面的比前面的更优。
- 树上背包的背包在线性背包看来是有依赖背包问题的简化版本,因此在树上背包我们用
f[i][j]
表示以i
为根节点,选j
条边(类似背包的体积)的最大价值,于是每一棵子树看出一组背包,若需要选择该子树son
,则根结点u
到子树son
的边一定用上,因此能用上的总边数一定减1
,总共可以选择j
条边时,当前子树son
分配的最大边数是j - 1
(这里为什么要-1呢?因为必须要选根节点到其他物品组的那条边),对于任意一棵子树有f[i][j]=max(f[i][j],f[son][k]+f[i][k-j-1]+w[i])
。 - 拓展:
树形dp分为两大题型:边作为体积,顶点的数量或者顶点的权值作为体积。
- 本道题特殊就特殊在我们可以建立一个超级原点(虚拟原点),这样就更好做了,就如图:
代码
#include<iostream>
#include<algorithm>
#include<cstring>
using namespace std;
const int N = 310,M = 2*N;
int e[M],ne[M],w[M],h[N],idx;
int f[M][M];
int o[N],cnt;
int n,V;
void add(int a,int b,int c){
e[idx]=b,w[idx]=c,ne[idx]=h[a],h[a]=idx++;
}
void dfs(int u){
for(int i=h[u];~i;i=ne[i]){
int p=e[i];
dfs(p);
for(int j=V;j;j--){
for(int k=0;k<=j-1;k++){
f[u][j]=max(f[u][j],f[p][k]+f[u][j-k-1]+w[i]);
}
}
}
}
int main(){
cin>>n>>V;
memset(h,-1,sizeof h);
//建立一个超级原点
for(int i=1;i<=n;i++){
int a,b;
cin>>a>>b;
add(a,i,b);
}
dfs(0);
cout<<f[0][V];
return 0;
}