贪心——[MtOI2019] 永夜的报应

[MtOI2019] 永夜的报应

题目来源

题目背景

在这世上有一乡一林一竹亭,也有一主一仆一仇敌。

有人曾经想拍下他们的身影,却被可爱的兔子迷惑了心神。

那些迷途中的人啊,终究会消失在不灭的永夜中……

题目描述

蓬莱山 辉夜(Kaguya)手里有一堆数字。

辉夜手里有 n n n 个非负整数 a 1 , a 2 ⋯ a n a_1,a_2\cdots a_n a1,a2an,由于辉夜去打 Gal Game 去了,她希望智慧的你来帮忙。

  • 你需要将这些数分成若干组,满足 n n n 个数中的每一个数都恰好被分到了一个组中,且每一组至少包含一个数。

定义一组数的权值为该组内所有数的异或和。请求出一种分组方案,使得分出的所有组数的权值之和最小,输出权值之和的最小值。

输入格式

输入的第一行包含一个正整数 n n n,表示给定的非负整数的数量。

接下来一行包含 n n n 个非负整数 a 1 , a 2 ⋯ a n a_1,a_2\cdots a_n a1,a2an

输出格式

输出一行一个整数表示答案。

样例 #1

样例输入 #1

3
1 2 5

样例输出 #1

6

样例 #2

样例输入 #2

6
9 18 36 25 9 32

样例输出 #2

15

提示

样例 1 1 1 解释:

一种最优的分组方案如下:

  • 将第 1 1 1 个数和第 3 3 3 个数分为一组,该组的权值为 1 ⊕ 5 = 4 1\oplus 5 = 4 15=4
  • 将第 2 2 2 个数分为一组,该组的权值为 2 2 2

该分组方案的所有组的权值之和为 4 + 2 = 6 4 + 2 = 6 4+2=6,可以证明,不存在权值之和更小的分组方案。

样例 2 2 2 解释:

一种最优的分组方案如下:

  • 将第 1 1 1 个数和第 5 5 5 个数分为一组,该组的权值为 9 ⊕ 9 = 0 9\oplus 9 = 0 99=0
  • 将第 2 2 2 个数和第 4 4 4 个数分为一组,该组的权值为 18 ⊕ 25 = 11 18\oplus 25 = 11 1825=11
  • 将第 3 3 3 个数和第 6 6 6 个数分为一组,该组的权值为 36 ⊕ 32 = 4 36\oplus 32 = 4 3632=4

该分组方案的所有组的权值之和为 0 + 11 + 4 = 15 0 + 11 + 4 = 15 0+11+4=15。可以证明,不存在权值之和更小的分组方案。

子任务

  • 对于 80 % 80\% 80% 的数据,满足 n ≤ 15 n\leq 15 n15
  • 对于 100 % 100\% 100% 的数据,满足 n ≤ 1 0 6 , a i ≤ 1 0 9 n\leq 10^6,a_i \leq 10^9 n106,ai109

题目来源

迷途之家2019联赛(MtOI2019) T1

出题人:disangan233

细节以思路

首先我们得知道 a ⊕ b < = a + b a\oplus b <= a+b ab<=a+b,这个可以拿几个例子进行证明(即数学归纳法),因此,我们为了使得分出的所有组数的权值之和最小,那么异或肯定比加法来的更优,所以我们就用贪心的思路,全部都用异或(真服了,样例怎么不这么写

代码

//a^b<=a+b

#include<iostream>

using namespace std;

const int N = 1e6+10;

int w[N];
int n,ans;

int main(){
    cin>>n;
    for(int i=1;i<=n;i++)cin>>w[i];
    
    for(int i=1;i<=n;i++){
        ans^=w[i];
    }
    
    cout<<ans;
    
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

green qwq

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值