[MtOI2019] 永夜的报应
题目背景
在这世上有一乡一林一竹亭,也有一主一仆一仇敌。
有人曾经想拍下他们的身影,却被可爱的兔子迷惑了心神。
那些迷途中的人啊,终究会消失在不灭的永夜中……
题目描述
蓬莱山 辉夜(Kaguya)手里有一堆数字。
辉夜手里有 n n n 个非负整数 a 1 , a 2 ⋯ a n a_1,a_2\cdots a_n a1,a2⋯an,由于辉夜去打 Gal Game 去了,她希望智慧的你来帮忙。
- 你需要将这些数分成若干组,满足 n n n 个数中的每一个数都恰好被分到了一个组中,且每一组至少包含一个数。
定义一组数的权值为该组内所有数的异或和。请求出一种分组方案,使得分出的所有组数的权值之和最小,输出权值之和的最小值。
输入格式
输入的第一行包含一个正整数 n n n,表示给定的非负整数的数量。
接下来一行包含 n n n 个非负整数 a 1 , a 2 ⋯ a n a_1,a_2\cdots a_n a1,a2⋯an。
输出格式
输出一行一个整数表示答案。
样例 #1
样例输入 #1
3
1 2 5
样例输出 #1
6
样例 #2
样例输入 #2
6
9 18 36 25 9 32
样例输出 #2
15
提示
样例 1 1 1 解释:
一种最优的分组方案如下:
- 将第 1 1 1 个数和第 3 3 3 个数分为一组,该组的权值为 1 ⊕ 5 = 4 1\oplus 5 = 4 1⊕5=4;
- 将第 2 2 2 个数分为一组,该组的权值为 2 2 2。
该分组方案的所有组的权值之和为 4 + 2 = 6 4 + 2 = 6 4+2=6,可以证明,不存在权值之和更小的分组方案。
样例 2 2 2 解释:
一种最优的分组方案如下:
- 将第 1 1 1 个数和第 5 5 5 个数分为一组,该组的权值为 9 ⊕ 9 = 0 9\oplus 9 = 0 9⊕9=0;
- 将第 2 2 2 个数和第 4 4 4 个数分为一组,该组的权值为 18 ⊕ 25 = 11 18\oplus 25 = 11 18⊕25=11;
- 将第 3 3 3 个数和第 6 6 6 个数分为一组,该组的权值为 36 ⊕ 32 = 4 36\oplus 32 = 4 36⊕32=4。
该分组方案的所有组的权值之和为 0 + 11 + 4 = 15 0 + 11 + 4 = 15 0+11+4=15。可以证明,不存在权值之和更小的分组方案。
子任务
- 对于 80 % 80\% 80% 的数据,满足 n ≤ 15 n\leq 15 n≤15。
- 对于 100 % 100\% 100% 的数据,满足 n ≤ 1 0 6 , a i ≤ 1 0 9 n\leq 10^6,a_i \leq 10^9 n≤106,ai≤109。
题目来源
迷途之家2019联赛(MtOI2019) T1
出题人:disangan233
细节以思路
首先我们得知道
a
⊕
b
<
=
a
+
b
a\oplus b <= a+b
a⊕b<=a+b,这个可以拿几个例子进行证明(即数学归纳法),因此,我们为了使得分出的所有组数的权值之和最小,那么异或肯定比加法来的更优,所以我们就用贪心的思路,全部都用异或(真服了,样例怎么不这么写)
代码
//a^b<=a+b
#include<iostream>
using namespace std;
const int N = 1e6+10;
int w[N];
int n,ans;
int main(){
cin>>n;
for(int i=1;i<=n;i++)cin>>w[i];
for(int i=1;i<=n;i++){
ans^=w[i];
}
cout<<ans;
return 0;
}