数字游戏
题目描述
KC 邀请他的两个小弟 K 和 C 玩起了数字游戏。游戏是 K 和 C 轮流操作进行的,K 为先手。KC 会先给定一个数字 Q Q Q,每次操作玩家必须写出当前数字的一个因数来代替当前数字,但是这个因数不能是 1 1 1 和它本身。例如当前数字为 6 6 6,那么可以用 2 , 3 2, 3 2,3 来代替,但是 1 1 1 和 6 6 6 就不行。现在规定第一个没有数字可以写出的玩家为胜者。K 在已知 Q Q Q 的情况,想知道自己作为先手能不能胜利,若能胜利,那么第一次写出的可以制胜的最小数字是多少呢?整个游戏过程我们认为 K 和C用的都是最优策略。
输入格式
仅一行,一个正整数 Q Q Q。
输出格式
第一行是 1 1 1 或 2 2 2, 1 1 1 表示 K 能胜利, 2 2 2 表示 C 能胜利。
若 K 能胜利,则在第二行输出第一次写出的可以制胜的最小数字。
若是第一次就无法写出数字,则认为第一次写出的可以制胜的最小数字为 0 0 0。
样例 #1
样例输入 #1
6
样例输出 #1
2
样例 #2
样例输入 #2
30
样例输出 #2
1
6
提示
对于
30
%
30 \%
30% 的数据,
Q
≤
50
Q \le 50
Q≤50;
对于
100
%
100 \%
100% 的数据,
2
≤
Q
≤
10
13
2 \le Q \le {10}^{13}
2≤Q≤1013。
思路
这道题就单纯先存储因数,如果因数个数==2,此时先手必败。反之如果大于2,则先手必胜,而且题目叫我们求第一次写出的可以制胜的最小数字是多少,那么这个就是把最小的两个因数相乘即可。
注意:对于这样拿出第一个的和第二个数的东西,我们可以用队列进行维护。
代码
//直接模拟即可
#include<iostream>
#include<queue>
#define int long long
using namespace std;
int n;
queue<int>q;
signed main(){
cin>>n;
for(int i=2;i<=n/i;i++){
while(n%i==0){
q.push(i);
n/=i;
}
}
if(n!=1)q.push(n);
if(q.size()==2){
puts("2");
return 0;
}
if(q.size()==1){
puts("1");
puts("0");
return 0;
}
puts("1");
int ans=q.front();
q.pop();
cout<<ans*q.front()<<endl;
return 0;
}