数字游戏(质数+因数)

数字游戏

题目描述

KC 邀请他的两个小弟 K 和 C 玩起了数字游戏。游戏是 K 和 C 轮流操作进行的,K 为先手。KC 会先给定一个数字 Q Q Q,每次操作玩家必须写出当前数字的一个因数来代替当前数字,但是这个因数不能是 1 1 1 和它本身。例如当前数字为 6 6 6,那么可以用 2 , 3 2, 3 2,3 来代替,但是 1 1 1 6 6 6 就不行。现在规定第一个没有数字可以写出的玩家为胜者。K 在已知 Q Q Q 的情况,想知道自己作为先手能不能胜利,若能胜利,那么第一次写出的可以制胜的最小数字是多少呢?整个游戏过程我们认为 K 和C用的都是最优策略。

输入格式

仅一行,一个正整数 Q Q Q

输出格式

第一行是 1 1 1 2 2 2 1 1 1 表示 K 能胜利, 2 2 2 表示 C 能胜利。

若 K 能胜利,则在第二行输出第一次写出的可以制胜的最小数字。

若是第一次就无法写出数字,则认为第一次写出的可以制胜的最小数字为 0 0 0

样例 #1

样例输入 #1

6

样例输出 #1

2

样例 #2

样例输入 #2

30

样例输出 #2

1
6

提示

对于 30 % 30 \% 30% 的数据, Q ≤ 50 Q \le 50 Q50
对于 100 % 100 \% 100% 的数据, 2 ≤ Q ≤ 10 13 2 \le Q \le {10}^{13} 2Q1013

思路

这道题就单纯先存储因数,如果因数个数==2,此时先手必败。反之如果大于2,则先手必胜,而且题目叫我们求第一次写出的可以制胜的最小数字是多少,那么这个就是把最小的两个因数相乘即可。

注意:对于这样拿出第一个的和第二个数的东西,我们可以用队列进行维护。

代码

//直接模拟即可
#include<iostream>
#include<queue>
#define int long long
using namespace std;

int n;
queue<int>q;

signed main(){
    cin>>n;
    
    for(int i=2;i<=n/i;i++){
        while(n%i==0){
            q.push(i);
            n/=i;
        }
    }
    
    if(n!=1)q.push(n);
    
    if(q.size()==2){
        puts("2");
        return 0;
    }
    
    if(q.size()==1){
        puts("1");
        puts("0");
        return 0;
    }
    puts("1");
    
    
    int ans=q.front();
    q.pop();
    cout<<ans*q.front()<<endl;
    
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

green qwq

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值