[SCOI2005] 繁忙的都市
题目描述
城市 C 是一个非常繁忙的大都市,城市中的道路十分的拥挤,于是市长决定对其中的道路进行改造。城市 C 的道路是这样分布的:城市中有 n n n 个交叉路口,有些交叉路口之间有道路相连,两个交叉路口之间最多有一条道路相连接。这些道路是双向的,且把所有的交叉路口直接或间接的连接起来了。每条道路都有一个分值,分值越小表示这个道路越繁忙,越需要进行改造。但是市政府的资金有限,市长希望进行改造的道路越少越好,于是他提出下面的要求:
- 改造的那些道路能够把所有的交叉路口直接或间接的连通起来。
- 在满足要求 1 的情况下,改造的道路尽量少。
- 在满足要求 1、2 的情况下,改造的那些道路中分值最大的道路分值尽量小。
任务:作为市规划局的你,应当作出最佳的决策,选择哪些道路应当被修建。
输入格式
第一行有两个整数 n , m n,m n,m 表示城市有 n n n 个交叉路口, m m m 条道路。
接下来 m m m 行是对每条道路的描述, u , v , c u, v, c u,v,c 表示交叉路口 u u u 和 v v v 之间有道路相连,分值为 c c c。
输出格式
两个整数 s , m a x s, \mathit{max} s,max,表示你选出了几条道路,分值最大的那条道路的分值是多少。
样例 #1
样例输入 #1
4 5
1 2 3
1 4 5
2 4 7
2 3 6
3 4 8
样例输出 #1
3 6
提示
数据范围及约定
对于全部数据,满足 1 ≤ n ≤ 300 1\le n\le 300 1≤n≤300, 1 ≤ c ≤ 1 0 4 1\le c\le 10^4 1≤c≤104, 1 ≤ m ≤ 8000 1 \le m \le 8000 1≤m≤8000。
代码
//这个就是很典型的最小生成树模型
#include<iostream>
#include<algorithm>
using namespace std;
const int N = 8010;
struct E{
int x,y,w;
bool operator<(const E t)const{
return w<t.w;
}
}e[N];
int n,m;
int p[N];
int ans;
int find(int x){
if(x!=p[x])p[x]=find(p[x]);
return p[x];
}
void kruskal(){
for(int i=1;i<=n;i++){
p[i]=i;
}
int res=0,cnt=0;
for(int i=1;i<=m;i++){
int pa=find(e[i].x),pb=find(e[i].y),w=e[i].w;
if(pa!=pb){
p[pa]=pb;
res+=w;
ans=max(ans,w);
cnt++;
}
}
cout<<cnt<<" "<<ans<<endl;
}
int main(){
cin>>n>>m;
for(int i=1;i<=m;i++){
int a,b,c;
cin>>a>>b>>c;
e[i]={a,b,c};
}
sort(e+1,e+1+m);
kruskal();
return 0;
}