[SCOI2005] 繁忙的都市(kruskal)

[SCOI2005] 繁忙的都市

题目描述

城市 C 是一个非常繁忙的大都市,城市中的道路十分的拥挤,于是市长决定对其中的道路进行改造。城市 C 的道路是这样分布的:城市中有 n n n 个交叉路口,有些交叉路口之间有道路相连,两个交叉路口之间最多有一条道路相连接。这些道路是双向的,且把所有的交叉路口直接或间接的连接起来了。每条道路都有一个分值,分值越小表示这个道路越繁忙,越需要进行改造。但是市政府的资金有限,市长希望进行改造的道路越少越好,于是他提出下面的要求:

  1. 改造的那些道路能够把所有的交叉路口直接或间接的连通起来。
  2. 在满足要求 1 的情况下,改造的道路尽量少。
  3. 在满足要求 1、2 的情况下,改造的那些道路中分值最大的道路分值尽量小。

任务:作为市规划局的你,应当作出最佳的决策,选择哪些道路应当被修建。

输入格式

第一行有两个整数 n , m n,m n,m 表示城市有 n n n 个交叉路口, m m m 条道路。

接下来 m m m 行是对每条道路的描述, u , v , c u, v, c u,v,c 表示交叉路口 u u u v v v 之间有道路相连,分值为 c c c

输出格式

两个整数 s , m a x s, \mathit{max} s,max,表示你选出了几条道路,分值最大的那条道路的分值是多少。

样例 #1

样例输入 #1

4 5
1 2 3
1 4 5
2 4 7
2 3 6
3 4 8

样例输出 #1

3 6

提示

数据范围及约定

对于全部数据,满足 1 ≤ n ≤ 300 1\le n\le 300 1n300 1 ≤ c ≤ 1 0 4 1\le c\le 10^4 1c104 1 ≤ m ≤ 8000 1 \le m \le 8000 1m8000

代码

//这个就是很典型的最小生成树模型

#include<iostream>
#include<algorithm>

using namespace std;

const int N = 8010;

struct E{
    int x,y,w;
    bool operator<(const E t)const{
        return w<t.w;
    }
}e[N];
int n,m;
int p[N];
int ans;

int find(int x){
    if(x!=p[x])p[x]=find(p[x]);
    return p[x];
}

void kruskal(){
    for(int i=1;i<=n;i++){
        p[i]=i;
    }
    
    int res=0,cnt=0;
    
    for(int i=1;i<=m;i++){
        int pa=find(e[i].x),pb=find(e[i].y),w=e[i].w;
        if(pa!=pb){
            p[pa]=pb;
            res+=w;
            ans=max(ans,w);
            cnt++;
        }
    }
    
    cout<<cnt<<" "<<ans<<endl;
}

int main(){
    cin>>n>>m;
    
    for(int i=1;i<=m;i++){
        int a,b,c;
        cin>>a>>b>>c;
        e[i]={a,b,c};
    }
    
    sort(e+1,e+1+m);
    
    kruskal();
    
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

green qwq

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值