[NOIP2014 提高组] 联合权值
题目背景
NOIP2014 提高组 D1T2
题目描述
无向连通图 G G G 有 n n n 个点, n − 1 n-1 n−1 条边。点从 1 1 1 到 n n n 依次编号,编号为 i i i 的点的权值为 W i W_i Wi,每条边的长度均为 1 1 1。图上两点 ( u , v ) (u, v) (u,v) 的距离定义为 u u u 点到 v v v 点的最短距离。对于图 G G G 上的点对 ( u , v ) (u, v) (u,v),若它们的距离为 2 2 2,则它们之间会产生 W v × W u W_v \times W_u Wv×Wu 的联合权值。
请问图 G G G 上所有可产生联合权值的有序点对中,联合权值最大的是多少?所有联合权值之和是多少?
输入格式
第一行包含 1 1 1 个整数 n n n。
接下来 n − 1 n-1 n−1 行,每行包含 2 2 2 个用空格隔开的正整数 u , v u,v u,v,表示编号为 u u u 和编号为 v v v 的点之间有边相连。
最后 1 1 1 行,包含 n n n 个正整数,每两个正整数之间用一个空格隔开,其中第 i i i 个整数表示图 G G G 上编号为 i i i 的点的权值为 W i W_i Wi。
输出格式
输出共 1 1 1 行,包含 2 2 2 个整数,之间用一个空格隔开,依次为图 G G G 上联合权值的最大值和所有联合权值之和。由于所有联合权值之和可能很大,输出它时要对 10007 10007 10007 取余。
样例 #1
样例输入 #1
5
1 2
2 3
3 4
4 5
1 5 2 3 10
样例输出 #1
20 74
提示
样例解释
本例输入的图如上所示,距离为 2 2 2 的有序点对有 ( 1 , 3 ) (1,3) (1,3) 、 ( 2 , 4 ) (2,4) (2,4) 、 ( 3 , 1 ) (3,1) (3,1) 、$(3,5) 、 、 、(4,2)$ 、$(5,3) $。
其联合权值分别为 2 , 15 , 2 , 20 , 15 , 20 2,15,2,20,15,20 2,15,2,20,15,20。其中最大的是 20 20 20,总和为 74 74 74。
数据说明
- 对于 30 % 30\% 30% 的数据, 1 < n ≤ 100 1 < n \leq 100 1<n≤100;
- 对于 60 % 60\% 60% 的数据, 1 < n ≤ 2000 1 < n \leq 2000 1<n≤2000;
- 对于 100 % 100\% 100% 的数据, 1 < n ≤ 2 × 1 0 5 1 < n \leq 2\times 10^5 1<n≤2×105, 0 < W i ≤ 10000 0 < W_i \leq 10000 0<Wi≤10000。
保证一定存在可产生联合权值的有序点对。
思路
题目叫我们求联合权值最大的是多少,而且联合权值它是距离为 2 的点会产生的,我们又知道距离为 2 的点有很多形式,要么是V字形,要么是 \ 字型。
也就是:(注意下图的第一种情况是一字性,第二种情况是v字形)
个人感觉这种都必须得回溯
代码
#include<iostream>
#include<cstring>
using namespace std;
const int N = 2e5+10,M = 2*N,mod=1e4+7;
int w[N];
int maxson[N],sumson[N];
int e[M],ne[M],h[N],idx;
int ansmax,anssum;
int n;
void add(int a,int b){
e[idx]=b,ne[idx]=h[a],h[a]=idx++;
}
void dfs(int u,int fa){
for(int i=h[u];~i;i=ne[i]){
int j=e[i];
if(j==fa)continue;
dfs(j,u);
ansmax=max(ansmax,w[u]*maxson[j]);//1字形
ansmax=max(ansmax,w[j]*maxson[u]);
anssum=(anssum+sumson[u]*w[j])%mod;
anssum=(anssum+w[u]*sumson[j])%mod;
maxson[u]=max(maxson[u],w[j]);
sumson[u]=(sumson[u]+w[j])%mod;
}
}
int main(){
cin>>n;
memset(h,-1,sizeof h);
for(int i=1;i<n;i++){
int a,b;
cin>>a>>b;
add(a,b);
add(b,a);
}
for(int i=1;i<=n;i++){
cin>>w[i];
}
dfs(1,-1);
cout<<ansmax<<' '<<anssum*2%mod<<endl;
return 0;
}