[NOIP2014 提高组] 联合权值(树的最长路径):两种形式的权值

108 篇文章 0 订阅

[NOIP2014 提高组] 联合权值

题目背景

NOIP2014 提高组 D1T2

题目描述

无向连通图 G G G n n n 个点, n − 1 n-1 n1 条边。点从 1 1 1 n n n 依次编号,编号为 i i i 的点的权值为 W i W_i Wi,每条边的长度均为 1 1 1。图上两点 ( u , v ) (u, v) (u,v) 的距离定义为 u u u 点到 v v v 点的最短距离。对于图 G G G 上的点对 ( u , v ) (u, v) (u,v),若它们的距离为 2 2 2,则它们之间会产生 W v × W u W_v \times W_u Wv×Wu 的联合权值。

请问图 G G G 上所有可产生联合权值的有序点对中,联合权值最大的是多少?所有联合权值之和是多少?

输入格式

第一行包含 1 1 1 个整数 n n n

接下来 n − 1 n-1 n1 行,每行包含 2 2 2 个用空格隔开的正整数 u , v u,v u,v,表示编号为 u u u 和编号为 v v v 的点之间有边相连。

最后 1 1 1 行,包含 n n n 个正整数,每两个正整数之间用一个空格隔开,其中第 i i i 个整数表示图 G G G 上编号为 i i i 的点的权值为 W i W_i Wi

输出格式

输出共 1 1 1 行,包含 2 2 2 个整数,之间用一个空格隔开,依次为图 G G G 上联合权值的最大值和所有联合权值之和。由于所有联合权值之和可能很大,输出它时要对 10007 10007 10007 取余。

样例 #1

样例输入 #1

5  
1 2  
2 3
3 4  
4 5  
1 5 2 3 10

样例输出 #1

20 74

提示

样例解释

本例输入的图如上所示,距离为 2 2 2 的有序点对有 ( 1 , 3 ) (1,3) (1,3) ( 2 , 4 ) (2,4) (2,4) ( 3 , 1 ) (3,1) (3,1) 、$(3,5) 、 、 (4,2)$ 、$(5,3) $。

其联合权值分别为 2 , 15 , 2 , 20 , 15 , 20 2,15,2,20,15,20 2,15,2,20,15,20。其中最大的是 20 20 20,总和为 74 74 74

数据说明

  • 对于 30 % 30\% 30% 的数据, 1 < n ≤ 100 1 < n \leq 100 1<n100
  • 对于 60 % 60\% 60% 的数据, 1 < n ≤ 2000 1 < n \leq 2000 1<n2000
  • 对于 100 % 100\% 100% 的数据, 1 < n ≤ 2 × 1 0 5 1 < n \leq 2\times 10^5 1<n2×105 0 < W i ≤ 10000 0 < W_i \leq 10000 0<Wi10000

保证一定存在可产生联合权值的有序点对。

思路

题目叫我们求联合权值最大的是多少,而且联合权值它是距离为 2 的点会产生的,我们又知道距离为 2 的点有很多形式,要么是V字形,要么是 \ 字型。

在这里插入图片描述
也就是:(注意下图的第一种情况是一字性,第二种情况是v字形)
在这里插入图片描述

个人感觉这种都必须得回溯

代码

#include<iostream>
#include<cstring>

using namespace std;

const int N = 2e5+10,M = 2*N,mod=1e4+7;

int w[N];
int maxson[N],sumson[N];
int e[M],ne[M],h[N],idx;
int ansmax,anssum;
int n;

void add(int a,int b){
    e[idx]=b,ne[idx]=h[a],h[a]=idx++;
}

void dfs(int u,int fa){
    for(int i=h[u];~i;i=ne[i]){
        int j=e[i];
        if(j==fa)continue;
        dfs(j,u);
        ansmax=max(ansmax,w[u]*maxson[j]);//1字形
        ansmax=max(ansmax,w[j]*maxson[u]);
        anssum=(anssum+sumson[u]*w[j])%mod;
        anssum=(anssum+w[u]*sumson[j])%mod;
        maxson[u]=max(maxson[u],w[j]);
        sumson[u]=(sumson[u]+w[j])%mod;
        
    }
}

int main(){
    cin>>n;
    
    memset(h,-1,sizeof h);
    
    for(int i=1;i<n;i++){
        int a,b;
        cin>>a>>b;
        add(a,b);
        add(b,a);
    }
    
    for(int i=1;i<=n;i++){
        cin>>w[i];
    }
    
    dfs(1,-1);
    
    cout<<ansmax<<' '<<anssum*2%mod<<endl;
    
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

green qwq

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值