[Kubic] Lines(数学)

[Kubic] Lines

题目背景

建议先看 C 题题目背景。

题目描述

平面直角坐标系中有 n n n 条直线,任意三条直线不交于一点且没有两条直线重合。显然这些直线形成了不超过 n ( n − 1 ) 2 \dfrac{n(n-1)}{2} 2n(n1)交点。你可以从这些直线中选出一部分,一个点被覆盖当且仅当有至少一条被选中的直线经过了它。求最少选出多少条直线才能覆盖所有交点

输入格式

第一行,一个整数 n n n

接下来 n n n 行,每行有三个整数 a , b , c a,b,c a,b,c,表示一条解析式为 a x + b y + c = 0 ax+by+c=0 ax+by+c=0 的直线。

注意:输入数据不保证 gcd ⁡ ( a , b ) = 1 \gcd(a,b)=1 gcd(a,b)=1

输出格式

共一行,一个整数,表示答案。

样例 #1

样例输入 #1

3
1 2 3
4 5 6
7 8 10

样例输出 #1

2

提示

对于 100 % 100\% 100% 的数据, 1 ≤ n ≤ 1 0 5 , ∣ a ∣ , ∣ b ∣ , ∣ c ∣ ≤ 1 0 9 , a , b 1\le n\le 10^5,|a|,|b|,|c|\le 10^9,a,b 1n105,a,b,c109,a,b 不全为 0 0 0

分值 n n n特殊性质
Subtask ⁡ 1 \operatorname{Subtask}1 Subtask1 10 10 10 ≤ 20 \le 20 20
Subtask ⁡ 2 \operatorname{Subtask}2 Subtask2 30 30 30 ≤ 100 \le 100 100
Subtask ⁡ 3 \operatorname{Subtask}3 Subtask3 10 10 10无特殊限制 a b = 0 ab=0 ab=0
Subtask ⁡ 4 \operatorname{Subtask}4 Subtask4 50 50 50无特殊限制

样例解释

一种方法是选出 x + 2 y + 3 = 0 x+2y+3=0 x+2y+3=0 4 x + 5 y + 6 = 0 4x+5y+6=0 4x+5y+6=0 两条线。

可以证明没有更优的方案。

思路

在这里插入图片描述

此时我们肯定选的是 7 x + 8 y + 10 = 0 7x+8y+10=0 7x+8y+10=0 4 x + 5 y + 6 = 0 4x+5y+6=0 4x+5y+6=0 两条线。

  • 我们可以画几张图发现: n n n 条直线两两相交时,需要 n − 1 n-1 n1 条直线去覆盖。
  • 有一个平行线就要去掉一个。

代码

//斜率

#include<iostream>
#include<algorithm>
#include<map>

using namespace std;

map<double,int>s;
int n,x;

int main(){
    cin>>n;
    
    for(int i=1;i<=n;i++){
        double a,b,c;
        cin>>a>>b>>c;
        s[b/a]++;//斜率相同肯定交点不会被覆盖
        x=max(x,s[b/a]);
    }
    
    cout<<n-x<<endl;
    
    return 0;
    
}
//草

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

green qwq

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值