【模板】费用流:概念及证明过程

给定一个包含 n n n 个点 m m m 条边的有向图,并给定每条边的容量和费用,边的容量非负。

图中可能存在重边和自环,保证费用不会存在负环。

求从 S S S T T T 的最大流,以及在流量最大时的最小费用。

输入格式

第一行包含四个整数 n , m , S , T n,m,S,T n,m,S,T

接下来 m m m 行,每行三个整数 u , v , c , w u,v,c,w u,v,c,w,表示从点 u u u 到点 v v v 存在一条有向边,容量为 c c c,费用为 w w w

点的编号从 1 1 1 n n n

输出格式

输出点 S S S 到点 T T T 的最大流和流量最大时的最小费用。

如果从点 S S S 无法到达点 T T T 则输出 0 0

数据范围

2 ≤ n ≤ 5000 2≤n≤5000 2n5000,
1 ≤ m ≤ 50000 1≤m≤50000 1m50000,
0 ≤ c ≤ 100 0≤c≤100 0c100,
− 100 ≤ w ≤ 100 -100 \le w \le 100 100w100
S ≠ T S≠T S=T

输入样例:
5 5 1 5
1 4 10 5
4 5 5 10
4 2 12 5
2 5 10 15
1 5 10 10
输出样例:
20 300

思路及推导

概念:所有最大可行流中,费用的最大/最小值。

公式:请添加图片描述
其中, w w w 为费用。

拓展:可行流的流量不一定是从 s s s 来的。

比如:请添加图片描述
上图是张 G G G。满足容量限制和流量守恒。下面的网络流的流量可以任意但不影响最大流。请添加图片描述
我们把费用标称成色,此时这张图的费用流为 ( 1 + 1 + 1 + 1 + 1 + 1 ) × 5 + ( − 1 ) × 3 × 5 = 15 (1+1+1+1+1+1)\times 5+(-1)\times 3\times 5=15 (1+1+1+1+1+1)×5+(1)×3×5=15

做法:EK算法求,只不过把 bfs 改成 spfa。

证明:为什么这个做法是对的呢?请添加图片描述
此时我们假设 f 1 f_1 f1 是费用最小的, f 2 f_2 f2 是最短路的,且 f f f 不是费用最小的(这个是网络流,它们相加之和仍然费用流,因此等式是成立的)。我们假设 ∣ f ′ ∣ = ∣ f ∣ |f'|=|f| f=f(流量相等的意思),其中 f ′ f' f 是费用最小的,我们把 f ′ − f 1 f'-f_1 ff1 然后假设等于 f 2 ′ f_2' f2,那么此时: f ′ = f 1 + f 2 ′ f'=f_1+f_2' f=f1+f2 ,又因为 ∣ f ′ ∣ = ∣ f ∣ |f'|=|f| f=f ∣ f 1 ∣ = ∣ f 1 ′ ∣ |f_1|=|f_1'| f1=f1,那么 ∣ f 2 ∣ = ∣ f 2 ′ ∣ |f_2|=|f_2'| f2=f2。又因为此时我们是设 f ′ f' f 是费用最小的,那么我们可以推出: f 2 ′ < f 2 f_2'<f_2 f2<f2(根据 f 1 ∣ = ∣ f 1 ′ ∣ f_1|=|f_1'| f1=f1 f = f 1 + f 2 f=f_1+f_2 f=f1+f2)那么此时我们就找到了更短的路径,就跟 f 2 f_2 f2 是最短路径就矛盾了,那么我们原始结论成立。请添加图片描述
请添加图片描述
以上是费用流的公式。

spfa 得保证流网络没有负权边。请添加图片描述
前面是正向边的费用。

后面是反向边的费用流。

为什么这样呢?就是要满足退流(退费)的性质。

下面用公式的原理来说:

可行流的费用:

C o s t ( f u , v ) = f ( u , v ) ∗ w ( u , v ) Cost(f_{u,v}) = f(u,v) * w(u,v) Cost(fu,v)=f(u,v)w(u,v)

退流的时候设费用为负就可以抵消这个费用的产生的贡献了。

C o s t ( f u , v ) = f ( u , v ) ∗ w ( u , v ) + f ( u , v ) ∗ ( − w ( u , v ) ) = 0 Cost(f_{u,v}) = f(u,v) * w(u,v) + f(u,v) * (-w(u,v)) = 0 Cost(fu,v)=f(u,v)w(u,v)+f(u,v)(w(u,v))=0

如果要用负向边,我们得用到消圈法(存在负权回路的时候)。
请添加图片描述

以上是费用流的流程。

拓展资料

消圈法


总的做法

while 循环不断判断残量网络中是否存在增广路径。

对于循环中:

  • 找到增广路径。(只不过这边的相比 E K EK EK 算法的 bfs 改成了 spfa
  • 更新残量网络。
  • 累加最大流量。

循环结束,得出最大流和费用流。


代码

//EK算法

#include<iostream>
#include<algorithm>
#include<cstring>
#include<queue>

using namespace std;

const int N = 5010,M = 50000*2+10,INT = 1e8;

int e[M],ne[M],f[M],w[M],h[N],idx;
int d[N],incf[N],pre[N];//incf表示源点能传到每个节点的最大流量
bool st[N];
int n,m,S,T;

void add(int a,int b,int c,int d){
    e[idx]=b,f[idx]=c,w[idx]=d,ne[idx]=h[a],h[a]=idx++;
    e[idx]=a,f[idx]=0,w[idx]=-d,ne[idx]=h[b],h[b]=idx++;
}

bool spfa(){
    queue<int>q;
    q.push(S);
    
    memset(d,0x3f,sizeof d);
    
    memset(incf,0,sizeof incf);
    incf[S]=INT;
    
    d[S]=0;
    
    while(q.size()){
        int t=q.front();
        q.pop();
        st[t]=false;
        for(int i=h[t];~i;i=ne[i]){
            int ver=e[i];
            if(f[i]&&d[ver]>d[t]+w[i]){
                d[ver]=d[t]+w[i];
                pre[ver]=i;
                incf[ver]=min(f[i],incf[t]);
                
                if(!st[ver]){
                    st[ver]=true;
                    q.push(ver);
                }
            }
        }
    }
    return incf[T]>0;
}

void EK(int& flow,int& cost){
    flow=cost=0;
    
    while(spfa()){
        int t=incf[T];
        flow+=t,cost+=t*d[T];
        for(int i=T;i!=S;i=e[pre[i]^1]){
            f[pre[i]]-=t,f[pre[i]^1]+=t;
        }
    }
}

int main(){
    cin>>n>>m>>S>>T;
    
    memset(h,-1,sizeof h);
    
    for(int i=1;i<=m;i++){
        int a,b,c,d;
        cin>>a>>b>>c>>d;
        add(a,b,c,d);
    }
    
    int flow,cost;
    
    EK(flow,cost);
    
    cout<<flow<<" "<<cost;
    
    return 0;
    
}

  • 28
    点赞
  • 16
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

green qwq

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值