左神:二叉树的Morris遍历等

1.二叉树结点间的最大距离

2.派对的最大快乐值

3.Morris遍历


1.二叉树结点间的最大距离

 

最大距离分析:
    1.根结点不参与
      1.1最大距离在根结点左树
      1.2最大距离在根结点右树
    2.根结点参与
      从根结点左树最远的结点到右树最远的结点:由高度决定
    3.最大距离=上述3种情况的最大值

class Node {
public:
	int value;
	Node* left;
	Node* right;
	Node(int data) {
		this->value = data;
	}
};

class Info {
public:
	int maxDistance;
	int height;
	Info(int dis, int h) {
		maxDistance = dis;
		height = h;
	}
};

//返回以x为头的整棵树,两个信息
Info process(Node* x) {
	if (x == NULL)return Info(0, 0);
	Info leftInfo = process(x->left);
	Info rightInfo = process(x->right);
	//info
	int p1 = leftInfo.maxDistance;
	int p2 = rightInfo.maxDistance;
	int p3 = leftInfo.height + 1 + rightInfo.height;
	int maxDistance = max(p3, max(p1, p2));
	int height = max(leftInfo.height, rightInfo.height) + 1;
	return Info(maxDistance, height);
}

int maxDistance(Node* head) {
	return process(head).maxDistance;
}

2.派对的最大快乐值

可能性分类:每个员工在上级的影响下决定来与不来,所以分成两种情况即可。

class Info {
public:
	int laiMaxHappy;
	int buMaxHappy;
	Info(int lai, int bu) {
		laiMaxHappy = lai;
		buMaxHappy = bu;
	}
};

class Employee {
public:
	int happy;
	vector<Employee>nexts;//直接下属
};

Info process(Employee x) {
	if (x.nexts.empty())return Info(x.happy, 0);//x是基层员工
	int lai = x.happy;//x来的情况下,整棵树的最大收益的初始值
	int bu = 0;//x不来的情况下,整棵树最大收益的初始值
	//遍历直接下属,提取信息
	for (Employee next : x.nexts) {
		//取一名下属员工
		Info info = process(next);
		//如果x来,那么x的直系下属就不来
		lai += info.buMaxHappy;
		//如果x不来,x的直系下属可来也可不来,取最大值
		bu += max(info.laiMaxHappy, info.buMaxHappy);
	}
	return Info(lai, bu);
}

int maxHappy(Employee boss) {
	Info headInfo = process(boss);
	return max(headInfo.laiMaxHappy, headInfo.buMaxHappy);
}
递归实际上就是暴力地罗列出所有可能性(可能性是我们提前想出来的),然后在所有情况中选择自己想要的,由局部组合成
整体。

 3.Morris遍历

class Node {
public:
	int value;
	Node* left;
	Node* right;
	Node(int val){
		this->value = value;
		this->left = NULL;
		this->right = NULL;
	}
};

void morris(Node* head) {
	if (head == NULL)return;
	Node* cur = head;
	Node* mostRight = NULL;
	while (cur != NULL) {//流程
		mostRight = cur->left;//mostRight暂时作cur的左孩子
		if (mostRight != NULL) {//有左子树
			//由于会手动更改右指针,所以多加一个判断条件
			while (mostRight->right != NULL && mostRight != cur) {
				mostRight = mostRight->right;
			}
			//mostRight变成了cur左子树最右的节点
			if (mostRight->right == NULL) {
				//第一次来到cur节点
				mostRight->right = cur;
				cur = cur->left;
				continue;
			}
			else {
				//第二次来到cur节点,恢复指针
				mostRight->right = NULL;
			}
		}
		cur = cur->right;
	}
}

先序:
    1.只经过一次的节点,直接打印
    2.经过两次的节点,只有第一次才打印
void morrisPre(Node* head) {
	if (head == NULL)return;
	Node* cur = head;
	Node* mostRight = NULL;
	while (cur != NULL) {//流程
		mostRight = cur->left;//mostRight暂时作cur的左孩子
		if (mostRight != NULL) {//有左子树,说明会遍历两次该节点
			//由于会手动更改右指针,所以多加一个判断条件
			while (mostRight->right != NULL && mostRight != cur) {
				mostRight = mostRight->right;
			}
			//mostRight变成了cur左子树最右的节点,第一次遍历时才打印
			if (mostRight->right == NULL) {
				//第一次来到cur节点
				cout << cur->value << " ";
				mostRight->right = cur;
				cur = cur->left;
				continue;
			}
			else {
				//第二次来到cur节点,恢复指针
				mostRight->right = NULL;
			}
		}
		else {//没有左子树的情况,说明只会遍历一次该节点,直接打印
			cout << cur->value << " ";
		}
		cur = cur->right;
	}
}

中序:
    1.只经过一次的节点,直接打印
    2.经过两次的节点,只有第二次才打印
void morrisIn(Node* head) {
	if (head == NULL)return;
	Node* cur = head;
	Node* mostRight = NULL;
	while (cur != NULL) {//流程
		mostRight = cur->left;//mostRight暂时作cur的左孩子
		if (mostRight != NULL) {//有左子树,说明会遍历两次该节点
			//由于会手动更改右指针,所以多加一个判断条件
			while (mostRight->right != NULL && mostRight != cur) {
				mostRight = mostRight->right;
			}
			//mostRight变成了cur左子树最右的节点
			if (mostRight->right == NULL) {
				//第一次来到cur节点
				mostRight->right = cur;
				cur = cur->left;
				continue;
			}
			else {
				//第二次来到cur节点,恢复指针
				mostRight->right = NULL;
			}
		}
		else {//没有左子树的情况,说明只会遍历一次该节点,直接打印
			cout << cur->value << " ";
		}
		//第二次遍历完之后跳出循环直接打印该节点
		cout << cur->value << " ";
		cur = cur->right;
	}
}

后序:
    1.只有在第二次遍历到能被二次遍历的节点时才做事:逆序打印其左树的右边界
    2.最后单独逆序打印整棵树的右边界
Node* reverseEdge(Node* from) {
	Node* pre = NULL;
	Node* next = NULL;
	while (from != NULL) {
		next = from->right;
		from->right = pre;
		pre = from;
		from = next;
	}
	return pre;
}

//以x为头的树,逆序打印这棵树的右边界
void printEdge(Node* x) {
	Node* tail = reverseEdge(x);
	Node* cur = tail;
	while (cur != NULL) {
		cout << cur->value << " ";
		cur = cur->right;
	}
	reverseEdge(tail);
}

void morriPos(Node* head) {
	if (head == NULL)return;
	Node* cur = head;
	Node* mostRight = NULL;
	while (cur != NULL) {//流程
		mostRight = cur->left;//mostRight暂时作cur的左孩子
		if (mostRight != NULL) {//有左子树,说明会遍历两次该节点
			//由于会手动更改右指针,所以多加一个判断条件
			while (mostRight->right != NULL && mostRight != cur) {
				mostRight = mostRight->right;
			}
			//mostRight变成了cur左子树最右的节点
			if (mostRight->right == NULL) {
				//第一次来到cur节点
				mostRight->right = cur;
				cur = cur->left;
				continue;
			}
			else {
				//第二次来到cur节点,恢复指针
				mostRight->right = NULL;
				//逆序打印左树右边界
				printEdge(cur->left);
			}
		}
		cur = cur->right;
	}
	//单独逆序打印整棵树右边界
	printEdge(head);
}

判断搜索二叉树:
bool isBST(Node* head) {
	if (head == NULL)return true;
	Node* cur = head;
	Node* mostRight = NULL;
	int preValue = INT_MIN;
	while (cur != NULL) {//流程
		mostRight = cur->left;//mostRight暂时作cur的左孩子
		if (mostRight != NULL) {//有左子树,说明会遍历两次该节点
			//由于会手动更改右指针,所以多加一个判断条件
			while (mostRight->right != NULL && mostRight != cur) {
				mostRight = mostRight->right;
			}
			//mostRight变成了cur左子树最右的节点
			if (mostRight->right == NULL) {
				//第一次来到cur节点
				mostRight->right = cur;
				cur = cur->left;
				continue;
			}
			else {
				//第二次来到cur节点,恢复指针
				mostRight->right = NULL;
			}
		}
		if (cur->value <= preValue)return false;
		preValue = cur->value;
		cur = cur->right;
	}
}

最优解:

如果要做第三次信息的强整合,用递归;否则,用Morris

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Jomo.

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值