呵呵,有一天我做了一个梦,梦见了一种很奇怪的电梯。大楼的每一层楼都可以停电梯,而且第i层楼(1≤i≤N)上有一个数字Ki(0≤Ki≤N)。电梯只有四个按钮:开,关,上,下。上下的层数等于当前楼层上的那个数字。当然,如果不能满足要求,相应的按钮就会失灵。例如:3,3,1,2,5代表了Ki(K1=3,K2=3,…),从1楼开始。在1楼,按“上”可以到4楼,按“下”是不起作用的,因为没有−2楼。那么,从A楼到B楼至少要按几次按钮呢?
输入格式
共二行。
第一行为3个用空格隔开的正整数,表示N,A,B(1≤N≤200, 1≤A,B≤N)N,A,B(1≤N≤200,1≤A,B≤N)。
第二行为N个用空格隔开的非负整数,表示Ki。
输出格式
一行,即最少按键次数,若无法到达,则输出-1−1。
输入输出样例
输入 #1
5 1 5 3 3 1 2 5
输出 #1
3
思路:标准的搜索模板,满足条件的情况下继续搜索;要注意如果每层都走过仍没有到达目标层的时候输出-1。
dfs版本:
dfs主要需要确定搜索停止条件,和搜索方向。并适当剪枝。
//#include<graphics.h>
#include <iostream>
//#include<fstream>
#include<ctime>
#include<math.h>
#include<string>
#include<vector>
#include<algorithm>
#include<queue>
#include <iomanip>
#include<string.h>
using namespace std;
int n, a, b;
int arr[300] = { 0 };//记录每层数字
int used[300] = { 0 };//表示该层是否来过
long long minm = 99999999999999;//初始最小值
void dfs(int dep, int sum) {//该dfs会在每层都走过但仍然没有到目标层的时候结束
if (dep == b) {
if (minm > sum)minm = sum;//每次到达目标楼层时取小
return;
}
if (sum > minm) return;//剪枝,当目前步数大于当前最小步数时没必要继续了
if (dep - arr[dep] >= 1 && used[dep - arr[dep]] == 0)//下一步合法的情况下深搜,向下搜
{
used[dep - arr[dep]] = 1;
dfs(dep - arr[dep], sum + 1);
used[dep - arr[dep]] = 0;//回溯
}
if (dep + arr[dep] <= n && used[dep + arr[dep]] == 0) {//向上搜
used[dep + arr[dep]] = 1;
dfs(dep + arr[dep], sum + 1);
used[dep + arr[dep]] = 0;
}
}
int main() {
cin >> n >> a >> b;
for (int j = 1; j <= n; j++) {
cin >> arr[j];
}
dfs(a, 0);
if (minm == 99999999999999)cout << -1;//如果没有走到目标层,输出-1
else cout << minm;
}
bfs版本:
//#include<graphics.h>
#include <iostream>
//#include<fstream>
#include<ctime>
#include<math.h>
#include<string>
#include<vector>
#include<algorithm>
#include<queue>
#include <iomanip>
#include<string.h>
using namespace std;
int n, a, b;
int arr[300] = { 0 };
int used[300] = { 0 };
long long minm = 99999999999999;
struct node {
int f;//当前楼层
int n;//当前步数
};
queue<node>q;//用队列实现bfs
void bfs() {
q.push({ a, 0 });//初始化队列,推入初始楼层信息
used[a] = 1;
while (!q.empty()) {//
node now = q.front();
q.pop();
if (now.f == b) {
if (minm > now.n) {
minm = now.n;
}
}
int next1 = now.f + arr[now.f], next2 = now.f - arr[now.f];
if (next1 <= n && used[next1] == 0) {//因为只有两个搜索方向,所以可以这样if写
//搜索情况多的时候应选用循环,并定义方向数组
q.push({ next1,now.n + 1 });
used[next1] = 1;
}
if (next2 >= 1 && used[next2] == 0) {
q.push({ next2,now.n + 1 });
used[next2] = 1;
}
}
}
int main() {
//int n,a,b;
cin >> n >> a >> b;
for (int j = 1; j <= n; j++) {
cin >> arr[j];
}
bfs();
if (minm == 99999999999999) cout << -1;//同dfs
else cout << minm;
}