【yolo数据集】xml格式转换txt,划分数据集,亲测有效

该文提供了一种将XML格式的标签转换为Yolo所需的TXT格式的方法,并详细介绍了转换过程。代码首先将XML文件转换为TXT,然后按比例划分数据集为训练集和验证集。转换后的TXT文件保存在新创建的label目录下,图像则被分配到相应的训练和验证目录中,以便于在Yolo中使用。
摘要由CSDN通过智能技术生成

项目场景:

在下载公共数据集时,有时得到的是xml格式的标签,我们需要转换成yolo所需要的txt格式,再按照需要的比例,划分数据集。在网上找了几个博主的方法,都出现了一些问题,最后做出来的txt文件存在各种问题,因此我综合多位博主的代码,自己改进了一份十分有效的转换方法。


解决方案:分为两段代码,请自行将数据集弄成voc数据集格式

 

 fe93b650d4214156a738fcbf444204c1.png

 

 

下面一段代码,将所有的xml转换成了txt文件,保存在了自己新建的label目录下。只需要修改我提示修改的地方!!!

import xml.etree.ElementTree as ET
import pickle
import os
from os import listdir, getcwd
from os.path import join
import glob

classes = ["defect"]   #改为你的数据集类别   修改1


def convert(size, box):
    dw = 1.0 / (size[0]+1)  #这里加1是为了防止除数等于0
    dh = 1.0 / (size[1]+1)
    x = (box[0] + box[1]) / 2.0
    y = (box[2] + box[3]) / 2.0
    w = box[1] - box[0]
    h = box[3] - box[2]
    x = x * dw
    w = w * dw
    y = y * dh
    h = h * dh
    return (x, y, w, h)


def convert_annotation(image_name):
    in_file = open('defect/Annotations/' + image_name[:-3] + 'xml')  # xml文件路径   修改2
    out_file = open('./label/' + image_name[:-3] + 'txt', 'w')  # 转换后的txt文件存放路径  修改3   注意这里需要你自己新建一个目录label!!!
    f = open('defect/Annotations/' + image_name[:-3] + 'xml') # xml文件路径  修改4同修改1
    xml_text = f.read()
    root = ET.fromstring(xml_text)
    f.close()
    size = root.find('size')
    w = int(size.find('width').text)
    h = int(size.find('height').text)

    for obj in root.iter('object'):
        cls = obj.find('name').text
        if cls not in classes:
            print(cls)
            continue
        cls_id = classes.index(cls)
        xmlbox = obj.find('bndbox')
        b = (float(xmlbox.find('xmin').text), float(xmlbox.find('xmax').text), float(xmlbox.find('ymin').text),
             float(xmlbox.find('ymax').text))
        bb = convert((w, h), b)
        out_file.write(str(cls_id) + " " + " ".join([str(a) for a in bb]) + '\n')


wd = getcwd()

if __name__ == '__main__':

    for image_path in glob.glob("defect/JPEGImages/*.jpg"):  # 每一张图片都对应一个xml文件这里写xml对应的图片的路径   修改5
        image_name = image_path.split('/')[-1]
        print(image_name)
        convert_annotation(image_name)

下面是第二段代码,将图像和txt文件共同进行了切分

# 将一个文件夹下数据按比例分在三个文件夹下
import os
import random
import shutil
from shutil import copy2

datadir_normal = "label"  # 更换为自己刚刚转换出来的txt路径     修改1
datadir_normal1 = 'defect/JPEGImages' # 所有的图像路径          修改2

all_data = os.listdir(datadir_normal)  # (图片文件夹)
num_all_data = len(all_data)
print("总数量: " + str(num_all_data))
index_list = list(range(num_all_data))
print(index_list)

# 生成随机种子,使得每一次划分的数据一样,如果没有要求,可以删除本段代码
r = random.random
random.seed(2)
random.shuffle(index_list,random=r)
print(index_list)
# 生成随机种子,使得每一次划分的数据一样,如果没有要求,可以删除本段代码

num = 0
#下面设置你输出后的存放路径       注意新建两个目录,分别是labels和images!!!    修改3
#下面的目录不用修改,会自动生成!!!!!!!!!!
trainDir = "labels/train"  # (将训练集txt放在这个文件夹下)    不用修改
if not os.path.exists(trainDir):
    os.mkdir(trainDir)
validDir = 'labels/test'  # (将验证集txt放在这个文件夹下)     不用修改
if not os.path.exists(validDir):
    os.mkdir(validDir)
trainDir1 = 'images/train'  # (将训练集图片放在这个文件夹下)   不用修改
if not os.path.exists(trainDir1):
    os.mkdir(trainDir1)
validDir1 = 'images/test'  # (将验证集图片放在这个文件夹下)   不用修改
if not os.path.exists(validDir1):
    os.mkdir(validDir1)

for i in index_list:
    fileName = os.path.join(datadir_normal, all_data[i])
    if num < num_all_data * 0.8:  # Train:0.8
        print(str(fileName))
        copy2(fileName, trainDir)
    else:  # test:0.2
        copy2(fileName, validDir)
    num += 1
num = 0
for i in index_list:
    fileName = os.path.join(datadir_normal1, all_data[i].replace("txt","jpg"))
    if num < num_all_data * 0.8:
        copy2(fileName,trainDir1)
    else:  # test:0.2
        copy2(fileName, validDir1)
    num += 1

好啦,现在已经将数据集转换且划分完毕了,分别在images和labels里面,再把他们放到同一个文件夹中就可以在yolo里面使用了7b5f5fdac2b5482b878a0dfa72489838.png

 

评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值