项目场景:
在下载公共数据集时,有时得到的是xml格式的标签,我们需要转换成yolo所需要的txt格式,再按照需要的比例,划分数据集。在网上找了几个博主的方法,都出现了一些问题,最后做出来的txt文件存在各种问题,因此我综合多位博主的代码,自己改进了一份十分有效的转换方法。
解决方案:分为两段代码,请自行将数据集弄成voc数据集格式
下面一段代码,将所有的xml转换成了txt文件,保存在了自己新建的label目录下。只需要修改我提示修改的地方!!!
import xml.etree.ElementTree as ET
import pickle
import os
from os import listdir, getcwd
from os.path import join
import glob
classes = ["defect"] #改为你的数据集类别 修改1
def convert(size, box):
dw = 1.0 / (size[0]+1) #这里加1是为了防止除数等于0
dh = 1.0 / (size[1]+1)
x = (box[0] + box[1]) / 2.0
y = (box[2] + box[3]) / 2.0
w = box[1] - box[0]
h = box[3] - box[2]
x = x * dw
w = w * dw
y = y * dh
h = h * dh
return (x, y, w, h)
def convert_annotation(image_name):
in_file = open('defect/Annotations/' + image_name[:-3] + 'xml') # xml文件路径 修改2
out_file = open('./label/' + image_name[:-3] + 'txt', 'w') # 转换后的txt文件存放路径 修改3 注意这里需要你自己新建一个目录label!!!
f = open('defect/Annotations/' + image_name[:-3] + 'xml') # xml文件路径 修改4同修改1
xml_text = f.read()
root = ET.fromstring(xml_text)
f.close()
size = root.find('size')
w = int(size.find('width').text)
h = int(size.find('height').text)
for obj in root.iter('object'):
cls = obj.find('name').text
if cls not in classes:
print(cls)
continue
cls_id = classes.index(cls)
xmlbox = obj.find('bndbox')
b = (float(xmlbox.find('xmin').text), float(xmlbox.find('xmax').text), float(xmlbox.find('ymin').text),
float(xmlbox.find('ymax').text))
bb = convert((w, h), b)
out_file.write(str(cls_id) + " " + " ".join([str(a) for a in bb]) + '\n')
wd = getcwd()
if __name__ == '__main__':
for image_path in glob.glob("defect/JPEGImages/*.jpg"): # 每一张图片都对应一个xml文件这里写xml对应的图片的路径 修改5
image_name = image_path.split('/')[-1]
print(image_name)
convert_annotation(image_name)
下面是第二段代码,将图像和txt文件共同进行了切分
# 将一个文件夹下数据按比例分在三个文件夹下 import os import random import shutil from shutil import copy2 datadir_normal = "label" # 更换为自己刚刚转换出来的txt路径 修改1 datadir_normal1 = 'defect/JPEGImages' # 所有的图像路径 修改2 all_data = os.listdir(datadir_normal) # (图片文件夹) num_all_data = len(all_data) print("总数量: " + str(num_all_data)) index_list = list(range(num_all_data)) print(index_list) # 生成随机种子,使得每一次划分的数据一样,如果没有要求,可以删除本段代码 r = random.random random.seed(2) random.shuffle(index_list,random=r) print(index_list) # 生成随机种子,使得每一次划分的数据一样,如果没有要求,可以删除本段代码 num = 0 #下面设置你输出后的存放路径 注意新建两个目录,分别是labels和images!!! 修改3 #下面的目录不用修改,会自动生成!!!!!!!!!! trainDir = "labels/train" # (将训练集txt放在这个文件夹下) 不用修改 if not os.path.exists(trainDir): os.mkdir(trainDir) validDir = 'labels/test' # (将验证集txt放在这个文件夹下) 不用修改 if not os.path.exists(validDir): os.mkdir(validDir) trainDir1 = 'images/train' # (将训练集图片放在这个文件夹下) 不用修改 if not os.path.exists(trainDir1): os.mkdir(trainDir1) validDir1 = 'images/test' # (将验证集图片放在这个文件夹下) 不用修改 if not os.path.exists(validDir1): os.mkdir(validDir1) for i in index_list: fileName = os.path.join(datadir_normal, all_data[i]) if num < num_all_data * 0.8: # Train:0.8 print(str(fileName)) copy2(fileName, trainDir) else: # test:0.2 copy2(fileName, validDir) num += 1 num = 0 for i in index_list: fileName = os.path.join(datadir_normal1, all_data[i].replace("txt","jpg")) if num < num_all_data * 0.8: copy2(fileName,trainDir1) else: # test:0.2 copy2(fileName, validDir1) num += 1
好啦,现在已经将数据集转换且划分完毕了,分别在images和labels里面,再把他们放到同一个文件夹中就可以在yolo里面使用了