3Blue1Brown【线性代数的本质】简略笔记

1. 关于向量,可以看作在坐标系中移动的距离,由此理解向量的加法。

2. v与w全部线性组合构成的向量集合称为“张成的空间”,av+bw,即仅通过向量加法和数乘两种运算能获得的所有可能向量集合。

大部分向量张成的空间是所有二维向量的集合;

共线时张成的空间是终点落在一条直线上的向量集合;

两个向量都是零向量时,原点。

3. 一组向量中至少有一个是多余的,没有对张成空间做出贡献,称它们线性相关,即这个向量落在其他向量张成的空间中,可以被表示成其他向量的线性组合。

所有向量都给张成空间增添了新的维度,称为线性无关

向量空间的一组基是张成该空间的一个线性无关向量。

4. 线性变换:保持网格线平行且等距分布,并保持原点不动。

5. 行列式表示一个变换的缩放比例,二维面积,三维体积,行列式为0表示变换到更低维的空间

将矩阵看作线性变换,那么矩阵的逆就是还原之前的变换,因此矩阵和矩阵的逆相乘结果为单位矩阵E,即没有变换前的一组基向量。

6. 矩阵的列(基向量变换后的位置)所张成的空间称为A的列空间,即所有可能的输出向量Av(所有可能的变换结果)构成的集合。

列空间的维数,变换后空间的维数。

秩与列数相等时,满秩。(所有列向量都对张成空间做出贡献)

7. 零向量一定在列空间中。

对满秩变换来说,唯一能落在原点的是零向量本身;二维变换将空间压缩到一条直线上,那么沿某个不同方向直线上直线上的所有点就被压缩到原点。

变换后落在原点的向量的集合,称为矩阵的零空间null space或kernel。

Ax=[0 0]转置(齐次线性方程组),零空间给出的就是齐次线性方程组所有可能的解

8. 3x2矩阵变换,将二维空间映射到三维空间上;

    2x3矩阵变换,将三维空间映射到二维空间;

    1x2矩阵变换,将二维平面映射到一维数轴。

9. 1x2矩阵与二维向量相乘的计算过程和点积的计算过程相同,而1x2矩阵,即二维空间到数轴的线性变换,通过将空间投影到给定数轴上完成,可据此理解点积可表示为投影。

点积为投影,标量;叉积为矢量积。

10. 基向量

用a语言描述的线性变换矩阵:a的基向量描述的向量,先左乘基变化矩阵(我们的语言描述的a的基向量),转换成我们语言描述的向量,然后左乘线性变换矩阵(我们语言),得到变换后向量(我们语言),最后左乘基变换矩阵的逆,得到变换后向量(a语言)

A^{-1}MA暗示数学上的转移作用,中间矩阵代表你所见的变换,外侧两个矩阵代表转移作用视角上的转化。

11.特征值和特征向量

Av=λv(特征向量v经过矩阵A的变换后,仅在它所张成的直线上伸缩特征值λ倍)

(A-λE)v=0,要求非零特征向量,需令|A-λE|=0,只有行列式为0,变换到低维度,才会有非零向量经过变换后压缩到原点。

矩阵变换后,大部分向量都离开了它所张成的直线,而有的向量仍留在它所张成的直线上,矩阵对它的作用仅仅是拉伸或压缩,这种向量为特征向量,衡量特征向量在变换中拉伸或压缩比例的因子为特征值

用特征向量作为基,特征基。对角化。

计算矩阵的幂,先变换到特征基,计算后再转换到标准坐标系。

  • 8
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值