Codeforces Round #818 (Div. 2) A-C

文章讨论了C++代码中涉及greatestcommondivisor(gcd)和leastcommonmultiple(lcm)的计算,以及如何将问题转化为统计倍数问题,并展示了在解决经典构造问题时的代码片段。
摘要由CSDN通过智能技术生成

人类智慧

A.

题意:求满足1<=a,b<=n且lcm(a,b)/gcd(a,b)<=3的(a,b)的个数

转化

a/gcd*b*gcd<=3

可以划归为1*2 1*1 2*1 3*1 1*3 则可以转变成一个统计倍数问题

#include<bits/stdc++.h>
using namespace std;
using ll = long long;
using pii = pair<int,int>;
#define int long long
const int N = 1e5+10;
const int inf = 0x3f3f3f3f;
const int mod = 1e9+7;
int gcd(int a,int b){return b?gcd(b,a%b):a;}
int lcm(int a,int b){return a*b/gcd(a,b);}
int qmi(int a,int b,int mod){int res=1;while(b){if(b&1)res=res*a%mod;b>>=1;a=a*a%mod;}return res;}
 
 
int n,q,m;
 
// int e[N],ne[N],w[N],h[N],idx;
// void add(int a,int b,int c){
	// e[idx] = b,ne[idx] = h[a],w[idx] = c,h[a] = idx++;
// }
 
 
 
void solve()
{
	cin>>n;
	cout<<n+(n/2+n/3)*2<<"\n";
 
}
 
signed main()
{
	ios::sync_with_stdio(0),cin.tie(0),cout.tie(0);
	int _;
	cin>>_;
	//_ = 1;
	while(_--)solve();
	return 0;
}

B.经典的构造经典的不会

很平凡的容易想到斜着填数字,但是你知道把基本块扩展一下就好了

#include<bits/stdc++.h>
using namespace std;
using ll = long long;
using pii = pair<int,int>;
#define int long long
const int N = 1e5+10;
const int inf = 0x3f3f3f3f;
const int mod = 1e9+7;
int gcd(int a,int b){return b?gcd(b,a%b):a;}
int lcm(int a,int b){return a*b/gcd(a,b);}
int qmi(int a,int b,int mod){int res=1;while(b){if(b&1)res=res*a%mod;b>>=1;a=a*a%mod;}return res;}


int n,q,m,k,r,c;

// int e[N],ne[N],w[N],h[N],idx;
// void add(int a,int b,int c){
	// e[idx] = b,ne[idx] = h[a],w[idx] = c,h[a] = idx++;
// }



void solve()
{
	cin>>n>>k>>r>>c;	
	for(int i=1;i<=n;i++){
		 for(int j=1;j<=n;j++)
		  if(((i+j-r-c)%k+k)%k==0)cout<<"X";
		  else cout<<".";
		cout<<"\n";	
	}
	
	


}

signed main()
{
	ios::sync_with_stdio(0),cin.tie(0),cout.tie(0);
	int _;
	cin>>_;
	//_ = 1;
	while(_--)solve();
	return 0;
}

C.又是经典的构造 经典的不会

容易想到a大于b肯定不行,然后只要不会出现 ai 还没到达上界 但是bi>bi+1+1都合法 很正确

但是想不到,也不是难就是菜

#include<bits/stdc++.h>
using namespace std;
using ll = long long;
using pii = pair<int,int>;
#define int long long
const int N = 2e5+10;
const int inf = 0x3f3f3f3f;
const int mod = 1e9+7;
int gcd(int a,int b){return b?gcd(b,a%b):a;}
int lcm(int a,int b){return a*b/gcd(a,b);}
int qmi(int a,int b,int mod){int res=1;while(b){if(b&1)res=res*a%mod;b>>=1;a=a*a%mod;}return res;}
int a[N];
int b[N];

int n;

// int e[N],ne[N],w[N],h[N],idx;
// void add(int a,int b,int c){
	// e[idx] = b,ne[idx] = h[a],w[idx] = c,h[a] = idx++;
// }



void solve()
{
	cin>>n;
	for(int i=1;i<=n;i++)cin>>a[i];
	for(int i=1;i<=n;i++)cin>>b[i];
	
	for(int i=1;i<=n;i++){
		if(a[i]>b[i]){cout<<"NO\n";return;}
	}
	
	
	for(int i=1;i<=n;i++){
		if(a[i]==b[i])continue;
		if(b[i]>b[i%n+1]+1){
			cout<<"NO\n";return;
		}
	}
	
		
	
	
	cout<<"YES\n";
	


}

signed main()
{
	ios::sync_with_stdio(0),cin.tie(0),cout.tie(0);
	int _;
	cin>>_;
	//_ = 1;
	while(_--)solve();
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值