- 博客(32)
- 收藏
- 关注
原创 ChatGPT自动化
近日, ChatGPT在圈内大火。那么什么是ChatGPT呢?ChatGPT是一种自然语言生成模型,由OpenAI开发。它基于GPT(Generative Pre-training Transformer)的技术架构,旨在更好地模拟人类的自然语言表达方式。与GPT相比,ChatGPT具有更强的上下文感知能力,可以在继续对话的基础上生成文本。它的应用包括聊天机器人、对话系统、智能邮件助手等。ChatGPT通过对大量的自然语言文本进行预训练,然后使用这些预训练权重来解决具体的任务。
2023-01-05 16:11:18 17540 6
原创 Python爬虫 自动爬取图片并保存
一、准备工作用python来实现对某图片的爬取并保存,以情绪图片为例,搜索可得到下图所示f12打开源码在此处可以看到这次我们要爬取的图片的基本信息是在img - scr中二、代码实现这次的爬取主要用了如下的第三方库简单构思可以分为三个小部分1.获取网页内容2.解析网页3.保存图片至相应位置下面来看第一部分:获取网页内容是不是so easy第二部分解析网页才是大头来看代码这里就运用到了BeautifulSoup以及re正则表达式的相关知识,需要有一定的基础哦下面就是第三部分:保存图片各
2022-01-01 20:05:36 36017 77
原创 《Spark篇》------ Spark基础
reduceByKey(func):应用于(K,V)键值对的数据集时,返回一个新的(K,V)形式的数据集,其中每个值是每个key传递到函数func中进行聚合后的结果。Spark On YARN模式的搭建比较简单,仅需要在YARN集群上的一个节点上安装Spark即可,该节点可作为提交Spark应用程序到YARN集群的客户端。2)Spark中引入的RDD是分布在多个计算节点上的只读对象集合,这些集合是弹性的,如果数据集一部分丢失,则可根据“血统”进行重建,保证高容错性。可变集合:可以在适当的地方被更新或扩展。
2023-06-12 12:27:19 2697 2
原创 《408篇》线性表与链表
define Maxsize 50 //定义线性表最大长度//定义元素类型typedef struct { //定义结构体//定义顺序表的元素int length;//定义线性表的长度}SqList;//定义元素类型typedef struct { //定义结构体//定义顺序表的元素int length;//定义线性表的长度//定义最大长度}SqList;//数据域//指向下一节点的指针//定义双链表的结点类型//数据域// 前驱结点的指针;后继结点的指针。
2023-04-09 22:38:55 565 1
原创 《Hadoop篇》------HDFS与MapReduce
Namenode:接受客户端的请求,维护整个HDFS集群目录树,元数据信息的存储由namenode负责Datanode:主要是负责数据块的存储,定期向namenode汇报block:SecondaryNamenode不是第二个namenode,当namenode宕机时,不能由SecondaryNamenode顶替每个切片都是由一个mapTask处理。
2023-02-18 17:19:28 2639 5
原创 《Hadoop篇》------大数据及Hadoop入门
大数据的本质就是利用计算机集群来处理大批量的数据,大数据的技术关注点在于如何将数据分发给不同的计算机进行存储和处理。(2)core-site.xml:配置Hadoop集群的元数据存储路径,配置主节点在哪一台机器上。Namenode:负责元数据的存储,接收客户端的请求,维护整个HDFS集群的目录树。hdfs dfs -get HDFS的根路径下的文件 本地的文件系统。前面一个/代表HDFS的根路径,后面一个/代表Linux的根路径。DataNode:负责数据块的存储,它是HDFS的小弟。
2023-02-15 20:34:27 638
原创 《C语言高级》(三)------ 结构体、联合体、枚举与预处理
前面我们介绍了如何使用#include 引入其他文件,我们接着来了解一下系统为我们提供的一些常用库。实际上我们已经使用过不少官方库提供的内容了int a;getchar();包括我们在实战中用到了一次string.h中提供的计算字符串长度的函数//现在有两个字符串,我们希望把他们拼接到一起//注意不能写 char *a = "world", *b = "world";//如果直接用指针指向字符串常量,是无法进行拼接的,因为大小已经固定。
2023-02-07 22:11:13 349
原创 2.4组会 ------ Variational Gridded Graph Convolution Network for Node Classification论文精读
在这篇文章中,我们提出了一个高性能的变量网格化图卷积网络VG-GCN来编码非正规的图数据,这种方法克服了所有的前面提到的方法。在真实世界的运用中,有大量的非欧几里得结构数据如社交网络,引文网络,知识图谱、蛋白质-蛋白质的相互作用和时间序列系统,这些通常都是非网格化数据并且不能被习惯性地用传统卷积网络编码。在这篇文章中,我们提出了一个高效的变量网格化图卷积网络(VG-GCN),它有着高计算性能,低内存损耗,便携的批处理大小,可比甚至优于GCNs。三、Introduction。二、Abstract。
2023-02-03 15:38:59 179
原创 《C语言高级》(二)------ 函数与指针 篇
我们知道,程序中使用的变量实际上都在内存中创建的,每个变量都会被保存在内存的某一个位置上(具体在哪个位置是由系统分配的),就像我们最终会在这个世界上的某个角落安家一样,所有的变量在对应的内存位置上都有一个地址(地址是独一无二的),而我们可以通过这个地址寻找到这个变量本体,比如int占据4字节,因此int类型变量的地址就是这4个字节的起始地址,后面32个bit位全部是用于存放此变量的值的。我们知道,实际上指针本身也是一个变量,它存放的是目标的地址,但是它本身作为一个变量,它也要将地址信息保存到内存中。
2023-01-27 17:09:24 341
原创 AI算法(三)plt基础
plt是深度学习的常用库之一,很多指标结果如AUC、F1、ROC等都是通过plt来实现。本篇文章主要记录plt的一些常见用法。
2023-01-24 17:57:51 887
原创 1.19组会 ------ C-GCN论文精读
然而,由于细微的表达,情感的抽象概念和多模态信息的表征,AER仍然是一个具有挑战性的任务。为了探究这种相互关系,在这篇文章中,我们为AER问题提出了一个新颖的基于相关性的图卷积神经网络(C-GCN),这种方法可以综合性地考虑到内在类别和用于特征学习和信息融合的内在类别视频。3)特征更新:在多重全连接边加权图的基础下,为了更能考虑到视频之间的相互关系,我们应用了经典的注意力-GCN模型来产生节点嵌入。像图1表现的那样,我们想要挖掘视频之间的相互关系来缩短特征空间中来自同一类的视频描述符之间的距离。
2023-01-18 21:21:08 465 2
原创 1.14组会 ------ Multi-modal Graph Learning 论文精读
为了有效地提取到与疾病关系密切的多模态信息,我们还提出了模态感知表征学习通过利用模态之间的相关性和互补性来聚合每一个模态的特征。除此之外,大多多模态表征学习方法仅仅是捕捉模态间的共性信息,模态之间的不同性缺被忽略,很有可能导致互补性的不足。因为图的强表达能力,以图为基础的方法已经广泛地被运用去处理多模态医学数据并且在众多的生物医学应用上获得了极好的表现。对于疾病预测任务,大多数现有的以图为基准的方法都是在特定的模态上(例如,生物医学图信息)由人工来定义图,然后通过GRL整合其他模态来获得病人的表征信息。
2023-01-14 13:35:02 1017
原创 《C语言高级》(一) ------ 数组与字符串 篇
对于字符类型的数组,比较特殊,它实际上可以作为一个字符串(String)表示,字符串就是一个或多个字符的序列,比如我们在一开始认识的 “hello world”,像这样的多个字符形成的一连串数据,就是一个字符串,而printf函数接收的第一个参数也是字符串。在c语言中并没有直接提供存储字符串的类型,我们熟知的能够存储字符的只有char类型,但是它只能存储单个字符,而一连串的字符想要通过变量进行保存,就只能依靠数组。每次循环中,从第一个数开始,让其与后面的数两两比较,如果更大,就交换位置,如果更小,就不动。
2023-01-13 20:37:35 273
原创 PyTorch学习笔记(八)-------------- 多模态融合
多模态指的是由不同信息源提供的多种信息表示方式。这些信息表示方式可以是文本、图像、声音、视频等。多模态信息的处理是许多人工智能应用的关键。例如,在视频分类任务中,我们可能希望利用视频的音频和视频轨道信息来判断视频的内容。在文本分类任务中,我们可能希望利用文本的语言、句法、语义信息来判断文本的类别。在图像分类任务中,我们可能希望利用图像的颜色、形状、纹理信息来判断图像的类别。多模态信息的处理可以使用多种方法。其中一种常见的方法是模态融合,即将多个模态的信息结合起来,以达到更好的性能。
2022-12-18 17:15:38 5842 8
原创 Appium安装指南
在你之前下载的androidsdk中D:\web\appium\androidsdk\androidsdk\tools\bin\uiautomatorviewer.bat。同样下载androidsdk安装包,完成后配置环境变量ANDROID_HOME,加入环境变量PATH。完整代码放在Github中,不同学校图书馆系统虽不一样,但大体思路相同,可自行编写。1.5.3 退出到上级菜单,在开发者模式中,启动USB调试。接下来就是一步一步xpath,一步一步click。手机上打开学习通APP,在cmd中执行。
2022-12-17 15:02:37 1647
原创 AI算法(二)pandas基础
随着人工智能的不断发展,机器学习这门技术也越来越重要,很多人都开启了学习机器学习,本文就介绍了机器学习的基础内容。panda较于numpy更为常用,在机器学习会用到大量需要用panda处理的数据,需熟练掌握。
2022-12-01 15:05:41 791
原创 利用Selenium爬取商品名以及价格
在使用selenium进行xpath定位时,需要仔细查看对应的值 不同的浏览器 不同的页面其xpath值也不同,比如本次第16条商品信息的xpath与其他不同,需要单独拉出进行爬取。通过F12打开源码,定位到搜索框可以看到id=“key”这个关键信息,下面就可以通过id元素在输入框中输入显卡,同时我们还需要点击搜索才能将页面跳转到对应的商品页面,同样也是用F12源码进行定位。这里采用的是chrome的驱动,也就是代码中的chromedriver.exe 需要提前下载好放到目录中。利用xpath获得的值。
2022-10-19 13:20:02 1343
原创 常见Linux命令
3. 按 :wq, 表示保存,按回车表示保存。1. 按 a (i,o) 进入编辑模式。表示不保存,强制退出。2. 按ESC退出编辑模式。通过tar命令来实现。
2022-09-27 23:25:51 141
原创 Python爬虫 爬取标题及内容
这次爬取过程和上篇文章中爬取必应图片大同小异常,唯一区别在于对需要登陆页面的处理,加个cookie就好啦,最后有不懂的地方欢迎评论私信哦。
2022-09-21 13:47:45 8337 2
原创 AI算法(一) Numpy基础
机器学习中数据的处理往往影响着一个demo的好坏。例如图片、音频或者文本数据传入到神经网络中会被转化为Tensor类型,Tensor其实就是高维数组。Python中的Numpy包提供了一种便携处理矩阵数据的办法。Numpy操作在机器学习深度学习中很重要,一部分Tensor操作其实跟Numpy操作非常类似。机器所能识别的虽然是数字,但这些数字在机器的思想里可以代表我们现实中的一些物体。最后,有不懂的地方欢迎私信留言哦。...
2022-07-25 16:09:47 529
原创 Deep learning
SigmoidLoss functionx:inputy:outputy = Sigmoid(w*x+b)梯度下降W = W - α J(w, b) α 为学习率Loss function Logistic回归np.exp(v)→取自然对数的v次幂np.zeros(n, 1)→n*1维np.array.sum(axis=0) 竖直相加展开对应维度相加100→[100 100 100 100] ^ T print(a.T) a的转置np.dot(x, y)→矩阵积assert(a.shape == (5,
2022-07-11 14:29:34 111
原创 PyTorch学习笔记(七)------------------ Vision Transformer
目录一、Patch and Linear map二、Adding classification token三、Positional encoding四、LN, MSA and Residual Connection五、LN、MLP and Residual Connection六、Classification MLP前言:vision transformer(vit)自Dosovitskiy等人介绍以来,一直在计算机视觉领域占主导地位,在分类中的大多数情况超过了传统的卷积神经网络(cnn)Transfo
2022-06-20 16:23:25 698 1
原创 蓝桥杯python入门基础
一、字符串逆序1.将一个字符串str的内容颠倒过来并输出输入:包括一行。第一行输入字符串输出:转换好的逆序字符串例子:输入i am a boy 输出:yob a ma inum = input('输入字符串:')print(num[::-1])二、闰年闰年能被4整除但不能被100整除year = int(input())if year % 4 == 0 and year % 100 !=0: print('yes')else: print('no')
2022-05-10 18:41:12 1741
原创 Ubuntu系统下配置PyTorch环境
前言这几天一直研究如何在ubuntu系统下安装Pytorch,中间磕磕碰碰也是碰到了各种各样的错误,但好在最终torch.cuda.is_available()显示True,时间也算没白白浪费。同样也感谢我当初的Linux老师为我指点迷津(有一说一,linux这个东西跟win是真不一样,对小白很不友好)步骤一、NVIDIA驱动1、安装linux系统,这个不多赘述,随便一个b站的教程都可以教会你。但还是友情提醒一下,在分配虚拟内存的时候最好多分配一点,我当初分配...
2022-04-17 14:59:02 8902
原创 PyTorch学习笔记(六)总结篇 -------完整机器学习(以VGG16为例)
新年伊始,想着pytorch的笔记也该写一个完结篇,以此来纪念前一段时间对pytorch的学习神经网络的搭建大同小异,一层卷积一层池化一层非线性激活诸如此类。重点还是在于对数据集的把握一个完整的项目离不开自建数据集这个环节,这就需要对Dataset进行重写class MyData(Dataset): def __init__(self, root_dir, mode_dir, label_dir, transform=None): # 初始化类,为class提供全局变量
2022-02-05 16:33:46 1646
原创 PyTorch学习笔记(五) ---------最大池化和非线性激活
一、最大池化类似于卷积操作,这里最大池化的过程与卷积有部分相似之处,不多赘述最大池化是为了保留数据特征,减少数据量class Module(nn.Module): def __init__(self): super(Module, self).__init__() # 父类继承 self.maxpool1 = MaxPool2d(kernel_size=3, ceil_mode=True) # kernel_size=3表示池化核是3*3, ceil
2022-01-12 19:10:58 603 2
原创 PyTorch学习笔记(四) -------卷积层
什么是卷积?来看这张图输入图像是224*224*3 即图片尺寸是224*224,3个通道;输出图片尺寸是224*224,64个通道个人认为,卷积就是图片经过卷积核的映射过程,如下图所示什么是通道?在卷积操作中一般要求设置的in_channel和out_channel在一遍jpg,png图片中,in_channel=3,为RGB三个通道,RGB的不同可以调整图片的色彩out_channel则表示卷积核的数量,卷积核的数量=输出通道以上就是这次学习中对这两个基本概念的个人
2022-01-11 20:42:07 1717
原创 PyTorch学习笔记(三)总结篇 --------自建数据集的载入
前言经过这几天学习,我算是把数据集这一块给摸清楚了,前面分布分支的学习总是有点模棱两可,不清楚这步到底要干啥,在网上找资料学习时,总是拿的pytorch官网给的数据集,没有针对性和专一性。这里教大家如何使用咱们自己的数据集,当然,在做实验时数据集是通过爬虫来获取的,关于爬虫的相关知识可以留言私信,或者看我第一篇博客哦一、MyData类的定义在自建数据集时需要自己去定义一个dataset类来继承torch.utils.data.Dataset来看代码class MyData(Datase
2022-01-06 21:34:36 1556
原创 PyTorch学习笔记(二) -----tensorboard和torchvision的基本操作
tensorboard的使用# -*- coding = utf-8 -*-from torch.utils.tensorboard import SummaryWriterwriter = SummaryWriter("logs") # 放在log文件夹下for i in range(100): writer.add_scalar("y=x", i, i) # 前面是y轴,后面是x轴writer.close()运行成功后会出现log的文件夹如何打开呢,在pycharm的
2022-01-05 20:34:49 1210
原创 PyTorch学习笔记(一) ---------数据集的简单创建
一、图像基本处理以及数据集的简单创建初次接触pytorch,配置环境还是比较麻烦的,主要是用到anaconda下面是对图像处理的基本操作from PIL import Image # 图像处理的库img_path = r'D://情绪图片测试/path1.jpg' # 图片路径img = Image.open(img_path) # 调用方法,打开该图像print(img.size) # 输出该图像的尺寸img.show() # 显示数据集这是将目的地址的图片形成列表
2022-01-03 20:04:26 2804
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人