Day16打卡! 时长:2h
今日感想:今天依旧是用递归法解决二叉树中深度和高度有关的问题,要学会融会贯通~
Leetcode104 二叉树的最大深度
题目链接:Leetcode104 二叉树的最大深度
第一想法:感觉也是一个层序遍历的活,每遍历到一个层,深度数加一,直至结束。
讲解后想法:首先要区分“高度”和“深度”的概念。高度,是二叉树中任一节点到叶子节点的距离,用后序遍历(左右中)。深度,是二叉树中任一节点到根节点的距离,用前序遍历(中左右)。而根节点的高度就是二叉树的最大深度,所以本题中我们可以通过后序求的根节点高度来求的二叉树最大深度,也可以使用前序,充分表现出求深度回溯的过程。
以递归法(后序)为例:
1.确定递归函数的参数和返回值:
参数就是传入树的根节点,返回就是这棵树的深度,所以返回值为int类型。
2.确定终止条件:
如果为空节点的话,就返回0,表示高度为0。
3.确定单层递归的逻辑:
先求它的左子树的深度,再求右子树的深度,最后取左右深度最大的数值 再+1 (加1是因为算上当前中间节点)就是目前节点为根节点的树的深度。
遇到的困难:理解这个解题逻辑用了很久~
代码:
递归法-后序
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
public int maxDepth(TreeNode root) {
if (root == null) {
return 0;
}
int leftDepth = maxDepth(root.left);
int rightDepth = maxDepth(root.right);
return Math.max(leftDepth, rightDepth) + 1;
}
}
递归法-前序
class Solution {
/**
* 递归法(求深度法)
*/
//定义最大深度
int maxnum = 0;
public int maxDepth(TreeNode root) {
ans(root,0);
return maxnum;
}
//递归求解最大深度
void ans(TreeNode tr,int tmp){
if(tr==null) return;
tmp++;
maxnum = maxnum<tmp?tmp:maxnum;
ans(tr.left,tmp);
ans(tr.right,tmp);
tmp--;
}
}
Leetcode559 n叉树的最大深度
题目链接:Leetcode559 n叉树的最大深度
第一想法:应该思路是差不多的......递归法确定好条件就行
代码:
class Solution {
/*递归法,后序遍历求root节点的高度*/
public int maxDepth(Node root) {
if (root == null) return 0;
int depth = 0;
if (root.children != null){
for (Node child : root.children){
depth = Math.max(depth, maxDepth(child));
}
}
return depth + 1; //中节点
}
}
Leetcode111 二叉树的最小深度
题目链接:Leetcode111 二叉树的最小深度
第一想法:这题和之前求的相反,是不是遇到最短的就直接返回呢?
讲解后想法:首先要注意,最小深度是从根节点到最近叶子节点的最短路径上的节点数量。
因此在递归三部曲时,求二叉树的最小深度和求二叉树的最大深度的差别主要在于处理左右孩子不为空的逻辑。
1.确定递归函数的参数和返回值(后序)
参数为要传入的二叉树根节点,返回的是int类型的深度。
2.确定终止条件
终止条件也是遇到空节点返回0,表示当前节点的高度为0。
3.确定单层递归的逻辑
如果左子树为空,右子树不为空,说明最小深度是 1 + 右子树的深度。
反之,右子树为空,左子树不为空,最小深度是 1 + 左子树的深度。 最后如果左右子树都不为空,返回左右子树深度最小值 + 1 。
遇到的困难:注意这道题的坑就好~
代码:
class Solution {
/**
* 递归法,相比求MaxDepth要复杂点
* 因为最小深度是从根节点到最近**叶子节点**的最短路径上的节点数量
*/
public int minDepth(TreeNode root) {
if (root == null) {
return 0;
}
int leftDepth = minDepth(root.left);
int rightDepth = minDepth(root.right);
if (root.left == null) {
return rightDepth + 1;
}
if (root.right == null) {
return leftDepth + 1;
}
// 左右结点都不为null
return Math.min(leftDepth, rightDepth) + 1;
}
}
Leetcode222 完全二叉树的节点个数
第一想法:乍一看有点差异,这给节点难道不能直接遍历计数吗?再仔细一想,还是不理解......
讲解后想法:如果按照普通二叉树来处理,层序遍历就是迭代法的活,我还是先学会递归法怎么用!
递归三部曲(后序)
1.确定递归函数的参数和返回值:
参数就是传入树的根节点,返回就返回以该节点为根节点二叉树的节点数量,所以返回值为int类型。
2.确定终止条件:
如果为空节点的话,就返回0,表示节点数为0。
3.确定单层递归的逻辑:先求它的左子树的节点数量,再求右子树的节点数量,最后取总和再加一 (加1是因为算上当前中间节点)就是目前节点为根节点的节点数量。
此外,还可以用完全二叉树的逻辑来解题。
完全二叉树只有两种情况,
情况一:就是满二叉树(递归向左遍历的深度等于递归向右遍历的深度);
情况二:最后一层叶子节点没有满(递归向左遍历的深度不等于递归向右遍历的深度)。
对于情况一,可以直接用 2^树深度 - 1 来计算,注意这里根节点深度为1。
对于情况二,分别递归左孩子,和右孩子,递归到某一深度一定会有左孩子或者右孩子为满二叉树,然后依然可以按照情况1来计算。
(如果整个树不是满二叉树,就递归其左右孩子,直到遇到满二叉树为止,用公式计算这个子树(满二叉树)的节点数量。)
此时依然是后序遍历递归,要修改第二步和第三步的写法。
遇到的困难:当作完全二叉树来解题很巧妙,尝试理解了一下代码~
代码:
递归法:
class Solution {
public int countNodes(TreeNode root) {
if(root == null) {
return 0;
}
return countNodes(root.left) + countNodes(root.right) + 1;
}
}
针对完全二叉树解法:
class Solution {
/**
* 针对完全二叉树的解法
*
* 满二叉树的结点数为:2^depth - 1
*/
public int countNodes(TreeNode root) {
if (root == null) return 0;
TreeNode left = root.left;
TreeNode right = root.right;
int leftDepth = 0, rightDepth = 0; // 这里初始为0是有目的的,为了下面求指数方便
while (left != null) { // 求左子树深度
left = left.left;
leftDepth++;
}
while (right != null) { // 求右子树深度
right = right.right;
rightDepth++;
}
if (leftDepth == rightDepth) {
return (2 << leftDepth) - 1; // 注意(2<<1) 相当于2^2,所以leftDepth初始为0
}
return countNodes(root.left) + countNodes(root.right) + 1;
}
}