摄像头监控人形并实时发送提醒到邮箱

home_monitor

介绍

使用OpenCV获取萤石云视频流,并使用PyTorch分析视频流,将分析结果发送到邮箱。可应用于摄像头实时人形检测,发现人形及时通知,并存储视频。

深度学习模型可以自己定义,也可以使用本仓库的,也可以将yolov5的模型应用在本项目下。

安装教程
  1. 安装OpenCV和Pytorch
  2. 克隆本项目到本地
训练模型
  1. 训练自定义模型
  • (1) 在“model/”目录添加自定义网络,或者使用“model/”目录中已写好的网络,然后在train.py中import
  • (2) 本项目使用的默认使用ImageFolder作为dataset,具体代码在“tool/dataloader.py”中,有需要可以自行更改。
    另外,本项目为了防止resize时造成图片拉伸,所以定义了一个Resize类,resize后的缺少部分用黑边填充,与yolov5类似。
  • (3) 将要训练的数据整理好了,只需要运行train.py就可以开始训练了
  1. 使用yolov5模型
  • (1) 将整个yolov5项目克隆下来, 并放在本项目的根目录下
  • (2) 可以去yolov5的github仓库下载weight文件,也可以cd进yolov5目录,用yolov5项目的代码训练模型
检测或预测
  1. 修改"tools/config/"目录下yaml配置文件,yaml文件中有具体的注释
  2. 查看根目录部分train.py和predict.py文件中__main__函数中的代码,根据需求自行修改
  3. 通过设置VideoReceiver(remote:bool)类中的remote参数值为True,来启用萤石云的URL,否则使用局域网的摄像头URL
  4. 运行predict.py使用自定模型进行预测,或运行yolo_detect.py使用yolov5模型进行检测
模型(测试用)

配置文件测试模型

本模型主要用于快速测试项目中的配置文件是否配置正确。

  • 1.将该模型文件放在“runs/train/”目录下,如果没有该目录则自行创建
  • 2.运行predict.py, 运行成功则说明配置文件正确
联系作者
  1. 源码地址: https://gitee.com/finebit/home_monitor
  2. 邮箱: finebit@qq.com
  3. 微信公众号: 泛比特
  4. 知乎搜索: 青颜君
  5. 个人网站: finebit.cn
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值