地理加权回归

本文介绍了地理加权回归模型的实现,包括SAM、ArcGIS、GEODA软件及R语言的应用。重点讨论了Gauss函数法和近高斯函数法在带宽确定中的作用,以及带宽选择的重要性,如CV交叉验证和AIC最小信息准则。通过这些方法,可以优化模型的回归参数,降低偏差和方差。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

地理加权回归模型实现:SAM,Arcgis,GEODA软件,R语言

1.Gauss函数法

【选择连续单调递减函数】

w_{ij} = exp(-(d_{ij}/b)^{2})

带宽b,就是权重与距离之间函数关系的非负衰减参数,带宽越大,权重随距离增加衰减得越慢。

2.近高斯函数法

【离散,长尾效应裁掉,提高效率】

w_{ij}=[1-(d_{ij}/b)^2        d_{ij} < b

w_{ij}=0                          d_{ij} > b

bi-square函数是距离阈值法和Gauss函数法结合,回归点在带宽内,高斯联系单调递减函数计算数据点权重,超出部分权重记为0。

带宽

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值