桶排序从1956年就开始被使用,其基本思想是由E.J.Issac和R.C.Singleton提出来的。我们将介绍的桶排序并不是真正的桶排序算法,而是简易版的,真正的桶排序算法要更加复杂也更难理解(对初学者不太友好的那种)。因此我们还是先理解简易版的桶排序吧,为以后的更深入的学习做好铺垫。
作为最先介绍的排序算法,桶排序其实是最快最简单理解的。桶排序有些类似垃圾分类,我们为可能出现的种类都准备一个特定的容器,当出现的事物属于其中一类后我们就把它放进其特定的容器中。那么事物放进容器内该如何进行排序呢?下面我们以考试名次排序为例进行介绍。
期末考试的时候董老师要将同学们的分数按照从高到低进行排序。董老师的班上只有5名同学,这5位同学的成绩分别为95分、93分、95分、92分和98分(满分100分),哦呦董老师的教学成果不错嘛。接下来我们对5名同学的成绩进行排序,排序后的顺序为98 95 95 93 92。那么有没有什么好的方法编写一段程序,让计算机随机读入5个数据后将5个数据从大到小输出呢?
对于这个例子我们只需要借助一个一位数组就能够搞定了。
首先,我们申请一个大小为101的数组int a[101](5位同学的成绩都在90~100之间)。现在我们有了101个变量,编号为a[0]~a[100]。那么,a[90]对应90分,a[91]对应91分,a[92]对应92分,a[93]对应93分......以此类推。开始时,我们将这101个变量都初始化为0,表示这些分数还没有人得过。
下面开始处理每一位学生的分数,第一位同学的分数为95分,我们就将相应的a[95]的值增加1,使a[95]的值从0改为1,表示95分出现过一次。第二位同学的分数为93分,我们将对应的a[93]的值改为1。现在到了第三位同学,第三位同学的分数跟第一位同学的分数一样,也是95分,这要怎么处理呢?没错,我们将对应的a[5]的值在1的基础上再增加1,将a[5]的值改为2,表示95分出现了两次。
按照以上的方法处理剩余的数据,显然,a[0]~a[100]中的数值其实就是0分到100分每个分数出现的次数。接下来我们按照需要将分数或其出现次数打印处理就好了。
输入数据为:
95 93 95 92 98
非去重排序
即相等的数据也按顺序进行打印。我们的例子即使用非去重排序进行打印。
#include <stdio.h>
int main()
{
int a[101], i, j, s;
for(i = 0; i <= 100; i++)
a[i] = 0; //初始化为0
for(i = 1; i <= 5; i++) //循环读入5个数据
{
scanf("%d", &s); //将每一个数据读到变量s中
a[s]++; //计数
}
//依次判断a[0]~a[100]
//for(i = 0; i <= 100; i++) //升序
for(i = 100; i >= 0; i--) //降序
for(j = 1; j <= a[i]; j++) //出现几次就打印几次
printf("%d ", i);
system("pause");
return 0;
}
去重排序
即相等数据不重复打印的排序。
#include <stdio.h>
int main()
{
int a[101], i, j, s;
for(i = 0; i <= 100; i++)
a[i] = 0; //初始化为0
for(i = 1; i <= 5; i++) //循环读入5个数据
{
scanf("%d", &s); //将每一个数据读到变量s中
a[s]++; //计数
}
//依次判断a[0]~a[100]
//for(i = 0; i <= 100; i++) //升序
for(i = 100; i >= 0; i--) //降序
if(a[i] > 0) //大于0即至少出现过1次
printf("%d ", i);
system("pause");
return 0;
}
简单查询
即查询指定分数出现几次。
#include <stdio.h>
int main()
{
int a[101], i, j, s;
for(i = 0; i <= 100; i++)
a[i] = 0; //初始化为0
for(i = 1; i <= 5; i++) //循环读入5个数据
{
scanf("%d", &s); //将每一个数据读到变量s中
a[s]++; //计数
}
printf("%d ", a[95]); //打印95分出现的次数
printf("%d ", a[94]); //打印94分出现的次数
system("pause");
return 0;
}
那么,按照桶排序的思想,如果需要对数据范围在0~1000之间的整数进行排序,我们就需要1001个桶来表示每一个数出现的次数。应当注意的是,桶排序用于整数的排序是极为方便的。
最后,我们来说下时间复杂度的问题。在非去重排序代码中我们用到了两层循环,代码中第6行的for(i = 0; i <= 100; i++)语句一共循环了101次,即桶的个数,记为m;第9行的for(i = 1; i <= 5; i++)语句循环了5次,即待排序数的个数,记为n;第16行和第17行一共循环了m+n次。所以整个排序算法一共执行了m+n+m+n次。通常用大写字母O来表示时间复杂度,因此该算法的时间复杂度是O(m+n+m+n),即O(2*(m+n))。在时间复杂度的计算中可以忽略较小的常数保留最高次项,所以最终桶排序的时间复杂度为O(M+N)(在表示时间复杂度时通常用大写字母)。