最后
🍅 硬核资料:关注即可领取PPT模板、简历模板、行业经典书籍PDF。
🍅 技术互助:技术群大佬指点迷津,你的问题可能不是问题,求资源在群里喊一声。
🍅 面试题库:由技术群里的小伙伴们共同投稿,热乎的大厂面试真题,持续更新中。
🍅 知识体系:含编程语言、算法、大数据生态圈组件(Mysql、Hive、Spark、Flink)、数据仓库、Python、前端等等。
网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!
- 江苏南京二手房市场的数据采集与分析
刘倩(2019年)通过爬取安居客网站的二手房信息,对江苏南京的二手房市场进行了数据采集与分析。通过统计分析二手房的房价、面积、朝向等信息,对房屋特征进行了分析。然而,该研究并未进行数据的可视化展示,限制了对二手房市场的整体把握。
- 基于R语言的房地产市场数据可视化系统
Shi Wen等(2018年)提出了基于R语言的房地产市场数据可视化系统。该系统通过爬取链家网的二手房信息,对房屋的价格、面积、朝向等信息进行了可视化展示。然而,由于R语言的局限性,该系统的使用和扩展性较差。
总的来说,目前国内外对于房地产市场数据可视化系统的研究还相对较少,特别是基于Python爬虫的系统研究较为少见。因此,基于Python爬虫的江苏南京二手房数据可视化系统的研究具有一定的创新意义和实践价值。该系统能够更加方便快捷地获取和分析二手房市场的信息,对购房者的购房决策提供有力的支持,并帮助监管部门及时了解市场动态,保障市场的健康发展。
基于Python爬虫江苏南京二手房数据可视化系统设计与实现(Django框架) 研究背景与意义
一、研究背景
随着城市化进程的加速和人口的不断增长,房地产市场逐渐成为社会经济发展的重要支柱之一。二手房市场作为房地产市场的重要组成部分,其交易活跃度和市场规模不断扩大。特别是在热门城市,如江苏南京,二手房交易已成为许多家庭和个人实现居住需求、投资增值的重要途径。然而,面对海量的二手房源信息和复杂的市场环境,购房者往往难以快速找到符合自己需求的房源。因此,一个能够实时、准确地抓取并展示二手房数据的可视化系统对于提升购房者体验、促进二手房市场发展具有重要意义。
南京,作为江苏省的省会城市和长江三角洲地区的重要中心城市,其二手房市场具有广阔的发展前景和巨大的市场潜力。然而,目前南京二手房市场存在信息不对称、数据不透明等问题,导致购房者难以做出明智的决策。因此,开发一个基于Python爬虫和Django框架的江苏南京二手房数据可视化系统显得尤为重要。
二、研究意义
- 提升购房者体验:通过爬虫技术抓取各大房产平台的二手房数据,包括房源位置、价格、户型、装修情况等,为购房者提供一个全面、便捷的房源信息查询平台。购房者可以根据自己的需求和预算进行筛选和比较,快速找到心仪的房源,提高购房的效率和满意度。
- 促进二手房市场发展:可视化系统不仅可以展示房源的基本信息,还可以通过分析市场趋势、价格走势等数据,为购房者提供决策支持。这有助于增加市场的透明度和公平性,减少信息不对称带来的风险,进而促进二手房市场的健康发展。
- 推动技术创新与应用:本研究涉及Python爬虫技术、Django框架、数据库管理以及数据可视化等多个领域的知识和技术。通过将这些技术相结合,可以开发出功能强大、性能稳定的可视化系统。这不仅展示了技术创新在房地产行业的应用潜力,也为其他行业的信息化建设提供了借鉴和参考。
此外,该研究还具有以下意义:一是为政府和相关机构提供房地产市场监管和决策支持,推动房地产市场的规范化和智能化发展;二是为房地产经纪机构提供市场分析和客户需求挖掘等方面的支持,助力企业科学决策和精准营销;三是为购房者提供更加便捷、个性化的购房服务,提升购房体验。
基于Python爬虫江苏南京二手房数据可视化系统设计与实现(Django框架) 国内外研究现状
一、国内研究现状
近年来,随着大数据和互联网技术的快速发展,国内对于二手房数据可视化的研究逐渐增多。一些学者和研究机构利用Python爬虫技术从各大房产网站抓取二手房数据,进行价格分析、趋势预测等方面的研究。同时,Django作为一个成熟稳定的Web开发框架,在国内也得到了广泛的应用和认可。
目前,国内已经有一些二手房数据可视化系统的实践案例,这些系统通常具备房源信息展示、价格走势分析、区域热度比较等功能,为购房者和房产经纪人提供了便捷的信息查询和决策支持。然而,现有的系统还存在一些不足之处,如数据来源单一、更新不及时、交互体验较差等。因此,开发一个更加完善、高效的江苏南京二手房数据可视化系统仍然是当前研究的热点和难点。
二、国外研究现状
相比国内,国外在二手房数据可视化领域的研究起步较早,技术也更加成熟。许多知名的房产网站和搜索引擎都提供了丰富的API接口和数据服务,为研究者提供了便捷的数据获取途径。同时,国外学者在数据挖掘、机器学习等领域取得了显著的成果,为二手房数据可视化提供了有力的技术支撑。
在实践应用方面,国外已经涌现出许多优秀的二手房数据可视化系统和工具。这些系统和工具不仅具备强大的数据展示和分析功能,还支持多平台访问和定制化服务。此外,一些系统还引入了先进的可视化技术和交互设计理念,为用户提供了更加直观、友好的操作体验。这些成功案例和经验对于国内相关系统的设计和实现具有重要的借鉴意义。
做了那么多年开发,自学了很多门编程语言,我很明白学习资源对于学一门新语言的重要性,这些年也收藏了不少的Python干货,对我来说这些东西确实已经用不到了,但对于准备自学Python的人来说,或许它就是一个宝藏,可以给你省去很多的时间和精力。
别在网上瞎学了,我最近也做了一些资源的更新,只要你是我的粉丝,这期福利你都可拿走。
我先来介绍一下这些东西怎么用,文末抱走。
(1)Python所有方向的学习路线(新版)
这是我花了几天的时间去把Python所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。
最近我才对这些路线做了一下新的更新,知识体系更全面了。
(2)Python学习视频
包含了Python入门、爬虫、数据分析和web开发的学习视频,总共100多个,虽然没有那么全面,但是对于入门来说是没问题的,学完这些之后,你可以按照我上面的学习路线去网上找其他的知识资源进行进阶。
(3)100多个练手项目
我们在看视频学习的时候,不能光动眼动脑不动手,比较科学的学习方法是在理解之后运用它们,这时候练手项目就很适合了,只是里面的项目比较多,水平也是参差不齐,大家可以挑自己能做的项目去练练。
(4)200多本电子书
这些年我也收藏了很多电子书,大概200多本,有时候带实体书不方便的话,我就会去打开电子书看看,书籍可不一定比视频教程差,尤其是权威的技术书籍。
基本上主流的和经典的都有,这里我就不放图了,版权问题,个人看看是没有问题的。
(5)Python知识点汇总
知识点汇总有点像学习路线,但与学习路线不同的点就在于,知识点汇总更为细致,里面包含了对具体知识点的简单说明,而我们的学习路线则更为抽象和简单,只是为了方便大家只是某个领域你应该学习哪些技术栈。
(6)其他资料
还有其他的一些东西,比如说我自己出的Python入门图文类教程,没有电脑的时候用手机也可以学习知识,学会了理论之后再去敲代码实践验证,还有Python中文版的库资料、MySQL和HTML标签大全等等,这些都是可以送给粉丝们的东西。
这些都不是什么非常值钱的东西,但对于没有资源或者资源不是很好的学习者来说确实很不错,你要是用得到的话都可以直接抱走,关注过我的人都知道,这些都是可以拿到的。
网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!