在github下载的神经网络项目,如何运行?

本文介绍了如何在命令行中创建Python虚拟环境,使用conda管理解释器,并分享了一套免费的系统化学习资源。强调了学习过程中体系化的价值,同时邀请读者加入技术交流社区以共同进步。
摘要由CSDN通过智能技术生成

在这里插入图片描述

  • 可以在命令行或者在pycharm的终端上输入:python training.py --params utils/params.yaml。它以utils目录中params.yaml文件的数据作为参数,执行了名为 training.py 的Python脚本。
  • 点击Code,再点击Download ZIP下载项目代码。
    在这里插入图片描述

创建虚拟环境

  • 第一步:打开Anaconda Prompt或者cmd命令行。
    在这里插入图片描述
    在这里插入图片描述
  • 第二步:根据项目要求,创建python解释器。
conda create -n How-To-Backdoor-Federated-Learning(解释器名字) python==3.7(要求的版本)

在这里插入图片描述

  • 第三步:输入conda env list,查看创建python解释器。
    在这里插入图片描述
  • 第四步:进入项目的解压目录中,输入cmd
    在这里插入图片描述在这里插入图片描述

在这里插入图片描述

  • 第五步:输入conda activate How-To-Backdoor-Federated-Learning(解释器名字),激活python解释器
    在这里插入图片描述
  • 第六步:为了更快下载安装包,输入下面命令,设置 pip 的源。注意,只用设置一次,以后不用重复设置
pip config set global.index-url https://pypi.tuna.tsinghua.edu.cn/simple
pip config set install.trusted-host mirrors.aliyun.com




现在能在网上找到很多很多的学习资源,有免费的也有收费的,当我拿到1套比较全的学习资源之前,我并没着急去看第1节,我而是去审视这套资源是否值得学习,有时候也会去问一些学长的意见,如果可以之后,我会对这套学习资源做1个学习计划,我的学习计划主要包括规划图和学习进度表。



分享给大家这份我薅到的免费视频资料,质量还不错,大家可以跟着学习

![](https://img-blog.csdnimg.cn/img_convert/21b2604bd33c4b6713f686ddd3fe5aff.png)



**网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。**

**[需要这份系统化学习资料的朋友,可以戳这里无偿获取](https://bbs.csdn.net/topics/618317507)**

**一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!**
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值