- 博客(5)
- 收藏
- 关注
原创 Swift编程语言-1
Swift 是为手机、平板电脑、桌面电脑、服务器或其他运行代码的平台编写软件的绝佳方式。它是一种安全和快速的编程语言,结合了现代编程语言思维和多样化开源社区的智慧。
2024-02-04 20:13:26 736
翻译 CS231n课程笔记——反向传播
目的在本节中,我们将通过对反向传播的直观理解来形成专业知识,反向传播是一种通过递归应用链式法则来计算表达式梯度的方法。了解这个过程及其微妙之处对你理解、有效开发、设计和调试神经网络至关重要。问题陈述本节研究的核心问题如下:给定函数fxf(x)fx,其中xxx是一个输入向量,计算fff在xxx处的梯度(即∇fx∇fx目的回想一下,我们对这个问题感兴趣的主要原因是,在神经网络这个特定情况下,fff对应于损失函数(LLL),输入xxx由训练数据和神经网络的权重组成。
2023-08-19 16:29:06 66
翻译 CS231n课程笔记——优化
将原始图像像素映射到类别分数的(参数化)评分函数(例如,线性函数)损失函数,根据诱导分数与训练数据中的真实标签的一致程度来衡量特定参数集的质量。我们看到有很多方法和版本(例如SoftmaxSVMSoftmaxSVM具体来说,回想一下线性函数的形式fxiWWxifxiWWxi,我们阐释的SVMSVMSVML1N∑i∑j≠yimax0fxi;Wj−fxi;Wyi1α。
2023-08-17 13:36:04 79
翻译 CS231n课程笔记——线性分类
总之,我们定义了一个从图像像素到类别分数的评分函数(在本节中,一个依赖于权重WWW和偏置bbb的线性函数)。与kNN分类器不同,这种参数化方法的优势在于,一旦我们学习了参数,我们就可以丢弃训练数据。此外,对新测试图像的预测是快速的,因为它只需要与WWW进行单个矩阵乘法,而不是与每个训练示例进行详尽的比较。我们介绍了偏置技巧,它允许我们将偏置向量折叠到权重矩阵中,以便只需要跟踪一个参数矩阵。我们定义了一个损失函数SVMSVMSVM和SoftmaxSoftmaxS。
2023-08-14 14:42:20 170
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人