非参数检验(Nonparametric tests)是统计分析方法的重要组成部分,在数据分析过程中,由于种种原因,人们往往无法对总体分布形态作简单假定,此时参数检验的方法就不再适用了。非参数检验基于这种考虑,在总体方差未知或知道甚少的情况下,利用样本数据对总体分布形态等进行推断的方法。由于非参数检验方法在推断过程中不涉及有关总体分布的参数,因而得名为“非参数”检验。
一,数据的导入与调整
本次示例:探讨三个林分(Z,ZK,CK)的土壤质量分形维数(Dm)的差异。
library(readxl)
example <- read_excel("C:/Users/lenovo/Desktop/example.xlsx")
View(example)
library(agricolae)#参数检验的函数包,这里没用上
library(PMCMRplus)#非参数多重比较检验的函数包,没有的先下载。
example$Treatment<-as.factor(example$Treatment)#将特征变量转变为因子变量,用于相关分析
str(example)#查看数据结构
head(example)#查看前六行数据
二,数据独立性、正态性、方差齐性检验
data1<-table(example$Treatment,example$Dm)
chisq.test(data1)#卡方独立性检验
shapiro.test(example$Dm)#夏皮罗—威尔克正态检验
bartlett.test(example$Dm~example$Treatment,example)#Bartlett方差齐性检验
从三大检验的P值,可得数据不满足正态性(P<0.05).
所以需要进行非参数检验,如果三大检验满足,则使用参数检验,参考我以前写的单因素方差分析。
三,非参数检验
kruskal.test(example$Dm~example$Treatment,example)#非参数检验
这里可以看到非参数检验的结果,P值 = 1.246e-05远远小于0.05,(与上面的三大检验的原假设不同)这表明,三组数据(即三个林分)的土壤质量分形维数(Dm)显著不同。
四,非参数检验的多重比较
当总体检验有统计学意义后,接下来我们会想知道哪两个组间会存在差异,这里推荐的是PMCMRplus函数包中的kwAllPairsDunnTest多重比较方法.使用前需要先下载install.packages("PMCMRplus").
kwAllPairsDunnTest(example$Dm~example$Treatment,example,p.adjust.method = "bonferroni")
这里可以看出,Z与CK,CK和ZK林分的土壤质量分形维数在(P<0.05)的情况下显著差异,Z和ZK林分的土壤质量分形维数在(P<0.05)的情况下不存在差异。
相关演示数据放在百度云盘,需要者自取。
链接:https://pan.baidu.com/s/1P6qtRKf_yfjT-QLxzAo8Aw
提取码:6668
~end