FedDG:在连续频率空间中通过情景学习进行医学图像分割的联合域泛化

3.方法

====

我们从联邦域泛化的公式及其在医学图像分割场景中的挑战开始。 然后,我们描述了在连续频率空间(ELCFS)中提出的情景学习法,以明确解决这些挑战。 该方法的概述如图2所示。

3.1、联合域泛化


前提:在FedDG中,我们将(X; Y)表示为任务的联合图像和标签空间,S=\left { S^{1}, S^{1},..., S^{k} \right })是参与联合学习的K个分布式源域的集合。 每个域包含S=\left { (x_{i}{k},y_{i}{k}) \right }_{i=1}{N{k}})的数据和标签对,它们是从特定于域的分布(x^{k},y))中采样的。 FedDG的目标是学习模型f_{\theta }:\chi \rightarrow \gamma)使用K个分布式源域,因此可以直接推广到完全看不见的高性能测试域\tau)。 标准联合学习范例涉及中央服务器和K个本地客户端之间的通信。 在每个联邦回合t,每个客户端k将从中央服务器接收相同的全局模型权重θ,并使用其本地数据S^{k})更新E个历时的模型。 然后,中央服务器从所有客户端收集局部参数\theta ^{k})并将其聚合以更新全局模型。 重复此过程,直到全局模型收敛为止。 在这项工作中,我们考虑最流行的联合平均算法(FedAvg)[36],该算法将权重与每个局部数据集的大小成比例的局部参数进行聚合,以更新全局模型,即\theta =\sum_{k=1}{K}\frac{N{k}}{N}\theta ^{k}),其中N=\sum_{k=1}{K}N{k})。 值得注意的是,我们的方法还可以灵活地合并到其他FL主干中。 挑战:为了实现看不见的领域泛化的目标,期望建立一个模型来彻底研究多源数据分布,以追求其学习的潜在空间的领域不变性。 但是,特定医学图像分割方案中的联合设置为此带来了一些挑战。 首先,FL中的多源数据是分布式存储的,每个客户端的学习只能访问其单独的本地分布,这限制了充分利用多源分布来学习可推广的参​​数。 其次,尽管FL合作了多源数据,但从不同临床站点获取的医学图像可能呈现出很大的异质性。 这导致协作数据集之间出现明显的分布,这不足以确保更连续的分布空间中的域不变性,以在复杂的临床环境中获得良好的通用性。 第三,医学解剖结构的结构通常在其边界区域周围表现出高度模糊性,这给以前的DG技术带来了挑战,而DG技术通常无法保证此类歧义区域中特征的区域不变性。

3.2、连续频率空间插值


为了解决分散数据集的限制,我们解决方案的基础是在客户端之间交换分布信息,以便每个本地客户端都可以访问多源数据分布以学习通用参数。 考虑到禁止共享原始图像,我们建议利用频率空间中固有的信息,这可以将分发(即样式)信息与原始图像分开,以在客户端之间共享而不会造成隐私泄露。 具体来说,给定第k个客户端的样本x_{i}^{k}\epsilon \mathbb{R}^{H\times W\times C})(对于RGB图像,C = 3,对于灰度图像,C = 1),我们可以通过快速傅里叶变换获得其频率空间信号[39]。 ] 作为:

可以将该频率空间信号F(x_{i}^{k}))进一步分解为分别反映低电平分布(例如,风格)和振幅分布的振幅谱A_{i}^{k}\epsilon \mathbb{R}^{H\times W\times C})和相位谱\rho _{i}^{k}\epsilon \mathbb{R}^{H\times W\times C})。 图像的高级语义(例如,对象)。 为了在各个客户之间交换分配信息,我们首先构造一个分配银行A=\left [ A{1},...,A{k} \right ]),其中每个A^{k}=\left { A_{i}^{k} \right }_{i=1}{N{k}})包含来自第k个客户端的图像的所有振幅谱,表示\chi ^{k})的分布。 然后,该银行就可以作为共享的分销知识供所有客户使用。

图2.我们在连续频率空间(ELCFS)中提出的情景学习概述。 通过连续的插值机制从频率空间跨客户端交换分布信息,使每个本地客户端都可以访问多源分布。 然后建立一个情景训练范式,以使局部优化暴露于域移位,并进行显式正则化,以促进模棱两可的边界区域的独立于域的特征凝聚和分离,以提高可推广性。

接下来,我们设计一个在频率空间内的连续插值机制,旨在将多源分布信息传输到利用分布库的本地客户端。 如图2的左侧所示,给定客户端k的局部图像xk i,我们可以用分配库A中的振幅频谱替换其振幅频谱的某些低频分量,而其相位频谱不受影响,以保持语义内容。结果,我们可以生成具有变换外观的图像,这些图像表现出其他客户的分布特征。更重要的是,我们不断在本地数据的振幅谱和其他数据的传递的振幅谱之间进行插值 域。 通过这种方式,我们可以受益于专用的密集空间和平滑的分布变化,从而为每个本地客户端丰富已建立的多域分布。 形式上,这是通过从分配库中随机采样振幅谱项A_{j}^{n})(n\neq)k),然后通过在A_{i}^{k})和A_{j}^{n})之间进行插值来合成新的振幅谱来实现的。令M=\mathbb{I}_{(h,w)\epsilon \left [ -\alpha H:\alpha H, -\alpha W:\alpha W \right ]})为二元掩码,它控制要交换的振幅谱内的低频分量的比例,其中心区域的值为1,而0在其他地方。 将λ表示为调整由A_{i}^{k})和A_{j}^{n})贡献的分布信息量的内插比,生成的新振幅谱相互作用分布为 本地客户端k和外部客户端n表示为:

在获得内插的幅度谱A_{i,\lambda }^{\kappa \rightarrow n})之后,我们将其与原始相位谱组合起来,以通过傅立叶逆变换F^{-1})生成变换后的图像,如下所示:

4.实验

====

我们在两种医学图像分割任务上广泛评估了我们的方法,即在视网膜眼底图像上进行视盘和杯状分割[40],以及在T2加权MRI上进行前列腺分割[31]。 我们首先与可以纳入联邦范例中的DG方法进行比较,然后提供深入的消融研究以分析我们的方法。

4.1、数据集和评估指标


我们采用来自公共数据集[52、10、40]的4个不同临床中心的视网膜眼底图像进行视盘和杯分割。为了进行预处理,我们将这些数据均匀地裁剪为800×800的磁盘区域,然后将裁剪区域的大小调整为384×384作为网络输入。我们进一步从公共数据集[2、21、31、33]划分的6个不同数据源中收集前列腺T2加权MRI图像,以进行前列腺MRI分割任务。对所有数据进行预处理,以使前列腺区域具有相似的视野,并在轴向平面中将其大小调整为384×384。然后,我们将数据分别归一化为强度值的零均值和单位方差。请注意,对于这两个任务,由于成像条件的变化,从不同临床中心获取的数据呈现出不同的分布。每个数据源的示例情况和样本数量如图3所示。在两个任务中采用了随机旋转,缩放和翻转的数据增强。为了进行评估,我们采用了两个常用的指标:骰子系数(Dice)和Hausdorff距离(HD),分别对整个物体区域和表面形状的分割结果进行定量评估。

4.2、实施细节


在联合学习过程中,所有客户都使用相同的超参数设置,并且使用Adam优化器对本地模型进行了训练,批处理大小为5,Adam动量分别为0.9和0.99。元步长和学习率都设置为1e-3。频率空间中的插值比λ在[0.0,1.0]内随机采样,我们将在消融研究中研究此参数。将超参数α根据经验设置为0.01,以避免在变换后的图像上出现伪像。对来自最后两个反卷积层的激活图进行插值和级联,以提取边界区域周围的语义特征,并且将温度参数τ凭经验设置为0.05。在两个任务中将权重γ设置为0.1和0.5,以平衡训练目标的大小。当全局模型稳定收敛时,我们总共训练了100轮联邦回合,并且每个联邦回合中的本地纪元E都设置为1。该框架由Pytorch库实现,并在两个NVIDIA TitanXp GPU上进行了训练。

图3.眼底图像分割和前列腺MRI分割任务中每个数据源的示例案例和切片编号。

4.3、与DG方法的比较


实验设置:在我们的实验中,我们遵循领域通用化文献中的实践,采用了留一域的策略,即在K-1分布式源域上进行培训,并在一个遗漏的看不见的目标域上进行测试。 这导致眼底图像分割任务的四个通用设置和前列腺MRI分割任务的六个设置。

我们与没有数据集中化并且可以并入联邦范式的本地学习过程的最新技术DG方法进行了比较,包括:JiGen [3]一种有效的自我监督学习方法,可以通过以下方法学习一般表示形式: 解决拼图游戏; BigAug [60]一种执行大量数据转换以规范化通用表示学习的方法。 Epi-FCR [25]一种在域之间定期交换部分模型(分类器或特征提取器)以使模型学习暴露于域移位的方案; RSC [17]一种方法 会随机丢弃主要功能以促进健壮的模型优化。 对于实施,我们遵循其公共代码或书面文件,并在联合设置中进行建立。 我们还将与基准设置进行比较,即使用基本FedAvg [36]算法学习全局模型,而无需使用任何泛化技术。

比较结果:表1给出了视网膜眼底分割的定量结果。我们看到,不同的DG方法可以比FedAvg或多或少地改善整体泛化性能。这归因于它们对本地学习的正则化作用以提取一般表示。与这些方法相比,我们的ELCFS在Dice和 HD既可用于光盘分割,也可用于杯分割。这得益于我们的频率空间插值机制,该机制向本地客户端提供了多域分布。具体来说,对于其他DG方法,他们的本地学习仍然只能访问单个分布,并且无法针对多样化分布空间中的域不变性对特征进行正则化。相反,我们的方法使局部学习能够充分利用多源分布的优势,并显着增强模糊边界区域周围特征的域不变性。此外,我们的ELCFS在所有看不见的域设置上都实现了对FedAvg的持续改进,Dice的整体性能提高了2.02%,HD的整体性能提高了2.86。相对边缘的。我们的ELCFS在六个未见的站点中获得最高的骰子,在大多数站点中获得高清。总体而言,我们的方法将Dice的FedAvg值从85.57%提高到87.39%,将HD值从12.42提高到10.88,优于其他DG方法。图4显示了分割结果,其中有两种情况来自于看不见的领域,无法完成每项任务。可以看出,我们的方法可以准确地分割结构并在未知分布的图像中描绘边界,而其他方法有时则无法做到。

图4.对眼底图像分割(上两行)和前列腺MRI分割(下两束)中不同方法的泛化结果进行定性比较。

4.4、我们方法的消融分析

=============

我们进行消融研究,以研究关于ELCFS的四个关键问题:1)每个组件对模型性能的贡献; 2)插值运算的好处和λ的选择; 3)边界区域周围的语义特征空间如何受我们方法的影响,以及4)参与客户的数量如何影响我们方法的效果。每个组成部分的贡献:我们首先通过从我们的方法中将它们删除以观察模型性能,来验证我们方法中两个关键组成部分的影响,即连续频率空间插值(CFSI)和边界定向情境学习(BEL)。如图5所示,

图5.消融结果,以分析我们方法中两个组件(即CFSI和BEL)的影响。

删除这两个部分中的任何一个都将导致针对这两个任务在不同的看不见的域设置中的泛化性能下降。这是合理的,并且反映了这两个组件如何对我们的方法的性能发挥互补作用,即CFSI生成的分布为学习BEL打下了基础,而BEL则反过来为有效利用生成的分布提供了保证。连续插值在频率空间中的重要性:为了分析ELCFS中连续插值机制的效果,我们使用t-SNE [34]来可视化眼底图像分割中生成图像的分布。如图6(a)所示,

图6.(a)可视化的t-SNE [34],用于在本地客户端(粉红色点)嵌入原始眼底图像以及来自不同客户端(绿色,黄色和蓝色点)的振幅频谱的相应转换图像; (b)在不同的插值比λ设置下,采用固定值或在不同范围内连续采样(带有三个独立运行的误差条)对光盘分割的综合性能。

一、Python所有方向的学习路线

Python所有方向路线就是把Python常用的技术点做整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。

二、学习软件

工欲善其事必先利其器。学习Python常用的开发软件都在这里了,给大家节省了很多时间。

三、入门学习视频

我们在看视频学习的时候,不能光动眼动脑不动手,比较科学的学习方法是在理解之后运用它们,这时候练手项目就很适合了。

网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。

需要这份系统化学习资料的朋友,可以戳这里无偿获取

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

  • 21
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值