学好 Python 不论是就业还是做副业赚钱都不错,但要学会 Python 还是要有一个学习规划。最后大家分享一份全套的 Python 学习资料,给那些想学习 Python 的小伙伴们一点帮助!
一、Python所有方向的学习路线
Python所有方向路线就是把Python常用的技术点做整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。
二、学习软件
工欲善其事必先利其器。学习Python常用的开发软件都在这里了,给大家节省了很多时间。
三、全套PDF电子书
书籍的好处就在于权威和体系健全,刚开始学习的时候你可以只看视频或者听某个人讲课,但等你学完之后,你觉得你掌握了,这时候建议还是得去看一下书籍,看权威技术书籍也是每个程序员必经之路。
四、入门学习视频
我们在看视频学习的时候,不能光动眼动脑不动手,比较科学的学习方法是在理解之后运用它们,这时候练手项目就很适合了。
五、实战案例
光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
六、面试资料
我们学习Python必然是为了找到高薪的工作,下面这些面试题是来自阿里、腾讯、字节等一线互联网大厂最新的面试资料,并且有阿里大佬给出了权威的解答,刷完这一套面试资料相信大家都能找到满意的工作。
网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!
def parseHtml(self):
text = self.getHtml()
#根据需要,用各种方法来解析网页的标签获取想要的内容#
......
天气网站不用登录就能获取内容,只需网站加上请求头即可。请求头都是非必需的,其作用是模拟浏览器,告诉网站发来的请求是正常合法的。
**请求头的获取:**
网上有很多方法,最简单的就在浏览器地址栏里键入“about:version”后回车。用户代理那一行就是所要的字符串,复制后写成字典格式:headers = {'User-Agent':“Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/88.0.4324.96 Safari/537.36”}
**解析过程:**
解析网页有多种方法,目前我自己也不是很拿手就先不说了。我挑选用BeautifulSoup查找自己想要的网页标签,上一篇的爬虫中已有些摸索了,请见:
[Python “今日新闻”一个小程序,拿走就能用!\_汉阳Hann's Home-CSDN博客今天做了一个爬虫程序:“今日新闻”,拿走就能用!![](https://g.csdnimg.cn/static/logo/favicon32.ico)https://blog.csdn.net/boysoft2002/article/details/120549021?spm=1001.2014.3001.5501](https://blog.csdn.net/boysoft2002/article/details/120549021?spm=1001.2014.3001.5501 "Python “今日新闻”一个小程序,拿走就能用!_汉阳Hann's Home-CSDN博客")这次我要实战一个天气预报类的爬虫——
### 爬取城市七日天气预报
先来爬取我们大苏州的,来瞅瞅大昆山的天气预报吧
from bs4 import BeautifulSoup as bs
from requests import get
Agent = ‘Mozilla/5.0 (Windows NT 6.1; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/85.0.4183.83 Safari/537.36’
def weather(url):
res = []
try:
data = get(url,headers = {‘User-Agent’:Agent})
data.encoding=‘uft-8’
soup = bs(data.text,‘html.parser’)
city = soup.find(‘div’,class_=‘crumbs fl’).get_text().strip()
List = soup.select(“ul[class=‘t clearfix’] li”)
for li in List:
try:
data = li.select(‘h1’)[0].text
text = li.select(“p[class=‘wea’]”)[0].text
temp = li.findAll(‘span’)[0].text + ‘/’ + li.findAll(‘i’)[0].text
res.append((city.split()[-1],data,text,temp))
except Exception as err: print(err)
except Exception as err: print(err)
return res
url = ‘http://www.*******.com.cn/weather/’
ext = ‘.shtml’
city = {‘苏州’:‘101190401’,‘昆山’:‘101190404’,‘太仓’:‘101190408’,‘常熟’:‘101190402’,‘张家港’:‘101190403’}
#方法一:遍历已知的城市代码
suzhou = 101190401
for i in range(suzhou,suzhou+12):
print(i,‘\n’,weather(url+str(i)+ext),‘\n’)
print(‘=’*80)
#方法二:遍历事先做好的城市代码字典
for i in city:
print(i,‘\n’,weather(url+city[i]+ext),‘\n’)
返回的爬取结果:
>
> 101190401
> [('城区', '1日(今天)', '多云', '/22℃'), ('城区', '2日(明天)', '多云转晴', '33℃/22℃'), ('城区', '3日(后天)', '晴', '33℃/23℃'), ('城区', '4日(周一)', '晴', '34℃/25℃'), ('城区', '5日(周二)', '晴转多云', '34℃/24℃'), ('城区', '6日(周三)', '多云', '30℃/23℃'), ('城区', '7日(周四)', '多云转雷阵雨', '31℃/24℃')]
>
>
> 101190402
> [('常熟', '1日(今天)', '多云', '/21℃'), ('常熟', '2日(明天)', '多云转晴', '32℃/23℃'), ('常熟', '3日(后天)', '晴', '33℃/24℃'), ('常熟', '4日(周一)', '晴', '33℃/23℃'), ('常熟', '5日(周二)', '晴转多云', '34℃/24℃'), ('常熟', '6日(周三)', '多云', '31℃/23℃'), ('常熟', '7日(周四)', '多云转雷阵雨', '31℃/24℃')]
>
>
> 101190403
> [('张家港', '1日(今天)', '多云', '/20℃'), ('张家港', '2日(明天)', '多云转晴', '31℃/22℃'), ('张家港', '3日(后天)', '晴', '32℃/23℃'), ('张家港', '4日(周一)', '晴', '33℃/23℃'), ('张家港', '5日(周二)', '晴转多云', '34℃/24℃'), ('张家港', '6日(周三)', '多云', '29℃/23℃'), ('张家港', '7日(周四)', '多云转雷阵雨', '31℃/24℃')]
>
>
> 101190404
> [('昆山', '1日(今天)', '多云', '/21℃'), ('昆山', '2日(明天)', '多云转晴', '32℃/23℃'), ('昆山', '3日(后天)', '晴', '33℃/24℃'), ('昆山', '4日(周一)', '晴', '33℃/24℃'), ('昆山', '5日(周二)', '晴转多云', '34℃/24℃'), ('昆山', '6日(周三)', '多云', '30℃/23℃'), ('昆山', '7日(周四)', '多云转雷阵雨', '31℃/24℃')]
>
>
> 101190405
> [('吴中', '1日(今天)', '多云', '/22℃'), ('吴中', '2日(明天)', '多云转晴', '33℃/22℃'), ('吴中', '3日(后天)', '晴', '33℃/23℃'), ('吴中', '4日(周一)', '晴', '34℃/25℃'), ('吴中', '5日(周二)', '晴转多云', '34℃/24℃'), ('吴中', '6日(周三)', '多云', '30℃/23℃'), ('吴中', '7日(周四)', '多云转雷阵雨', '31℃/24℃')]
>
>
> 101190406
> [('虎丘', '1日(今天)', '多云', '/22℃'), ('虎丘', '2日(明天)', '多云转晴', '33℃/22℃'), ('虎丘', '3日(后天)', '晴', '33℃/23℃'), ('虎丘', '4日(周一)', '晴', '34℃/25℃'), ('虎丘', '5日(周二)', '晴转多云', '34℃/24℃'), ('虎丘', '6日(周三)', '多云', '30℃/23℃'), ('虎丘', '7日(周四)', '多云转雷阵雨', '31℃/24℃')]
>
>
> 101190407
> [('吴江', '1日(今天)', '多云', '/21℃'), ('吴江', '2日(明天)', '多云转晴', '32℃/22℃'), ('吴江', '3日(后天)', '晴', '33℃/23℃'), ('吴江', '4日(周一)', '晴', '33℃/22℃'), ('吴江', '5日(周二)', '晴转多云', '34℃/23℃'), ('吴江', '6日(周三)', '多云', '31℃/23℃'), ('吴江', '7日(周四)', '多云转雷阵雨', '31℃/24℃')]
>
>
> 101190408
> [('太仓', '1日(今天)', '多云', '/20℃'), ('太仓', '2日(明天)', '多云转晴', '31℃/23℃'), ('太仓', '3日(后天)', '晴', '32℃/24℃'), ('太仓', '4日(周一)', '晴', '33℃/22℃'), ('太仓', '5日(周二)', '晴转多云', '34℃/24℃'), ('太仓', '6日(周三)', '多云', '30℃/22℃'), ('太仓', '7日(周四)', '多云转雷阵雨', '31℃/24℃')]
>
>
> 101190409
> [('相城', '1日(今天)', '多云', '/22℃'), ('相城', '2日(明天)', '多云转晴', '33℃/22℃'), ('相城', '3日(后天)', '晴', '33℃/23℃'), ('相城', '4日(周一)', '晴', '34℃/25℃'), ('相城', '5日(周二)', '晴转多云', '34℃/24℃'), ('相城', '6日(周三)', '多云', '30℃/23℃'), ('相城', '7日(周四)', '多云转雷阵雨', '31℃/24℃')]
>
>
> 101190410
> [('姑苏', '1日(今天)', '多云', '/22℃'), ('姑苏', '2日(明天)', '多云转晴', '33℃/22℃'), ('姑苏', '3日(后天)', '晴', '33℃/23℃'), ('姑苏', '4日(周一)', '晴', '34℃/25℃'), ('姑苏', '5日(周二)', '晴转多云', '34℃/24℃'), ('姑苏', '6日(周三)', '多云', '30℃/23℃'), ('姑苏', '7日(周四)', '多云转雷阵雨', '31℃/24℃')]
>
>
> 'NoneType' object has no attribute 'get\_text'
> 101190411 ###不存在的城市代码当然会报错###
> []
>
>
> 'NoneType' object has no attribute 'get\_text'
> 101190412
> []
>
>
> ================================================================================
> 苏州
> [('城区', '1日(今天)', '多云', '/22℃'), ('城区', '2日(明天)', '多云转晴', '33℃/22℃'), ('城区', '3日(后天)', '晴', '33℃/23℃'), ('城区', '4日(周一)', '晴', '34℃/25℃'), ('城区', '5日(周二)', '晴转多云', '34℃/24℃'), ('城区', '6日(周三)', '多云', '30℃/23℃'), ('城区', '7日(周四)', '多云转雷阵雨', '31℃/24℃')]
>
>
> 昆山
> [('昆山', '1日(今天)', '多云', '/21℃'), ('昆山', '2日(明天)', '多云转晴', '32℃/23℃'), ('昆山', '3日(后天)', '晴', '33℃/24℃'), ('昆山', '4日(周一)', '晴', '33℃/24℃'), ('昆山', '5日(周二)', '晴转多云', '34℃/24℃'), ('昆山', '6日(周三)', '多云', '30℃/23℃'), ('昆山', '7日(周四)', '多云转雷阵雨', '31℃/24℃')]
>
>
> 太仓
> [('太仓', '1日(今天)', '多云', '/20℃'), ('太仓', '2日(明天)', '多云转晴', '31℃/23℃'), ('太仓', '3日(后天)', '晴', '32℃/24℃'), ('太仓', '4日(周一)', '晴', '33℃/22℃'), ('太仓', '5日(周二)', '晴转多云', '34℃/24℃'), ('太仓', '6日(周三)', '多云', '30℃/22℃'), ('太仓', '7日(周四)', '多云转雷阵雨', '31℃/24℃')]
>
>
> 常熟
> [('常熟', '1日(今天)', '多云', '/21℃'), ('常熟', '2日(明天)', '多云转晴', '32℃/23℃'), ('常熟', '3日(后天)', '晴', '33℃/24℃'), ('常熟', '4日(周一)', '晴', '33℃/23℃'), ('常熟', '5日(周二)', '晴转多云', '34℃/24℃'), ('常熟', '6日(周三)', '多云', '31℃/23℃'), ('常熟', '7日(周四)', '多云转雷阵雨', '31℃/24℃')]
>
>
> 张家港
> [('张家港', '1日(今天)', '多云', '/20℃'), ('张家港', '2日(明天)', '多云转晴', '31℃/22℃'), ('张家港', '3日(后天)', '晴', '32℃/23℃'), ('张家港', '4日(周一)', '晴', '33℃/23℃'), ('张家港', '5日(周二)', '晴转多云', '34℃/24℃'), ('张家港', '6日(周三)', '多云', '29℃/23℃'), ('张家港', '7日(周四)', '多云转雷阵雨', '31℃/24℃')]
>
>
>
数据是有了,怎样更美化地输出需要另外的模块,先放一放。更为重要的问题是:怎样找到各城市的代码?比如,苏州对应的是 101190401 ,它之后的几个连续数字对应的是苏州辖内的各区和县级市。
网上很多文章都是爬取各省份的文字版网页( www.\*\*\*\*\*\*.com.cn/textFC/jiangsu.shtml 等)中的城市代码,这样还不是很方便。
经过摸查了很多个网页,终于发现了一个网页中可查到城市代码:
>
> https://d4.weather.com.cn/geong/v1/api?params={%22method%22:%22stationinfo%22,%22lng%22:120.592412,%22lat%22:31.303564}
> 注:%22就是双引号,被浏览器转码了
>
>
>
其返回内容为:
>
>
> ```
> {"status":"success","errmsg":"","timestamp":1622032653,"location":{"lng":120.592412,"lat":31.303564},"data":{"station":{"areaid":"101190401","category":"city","namecn":"苏州","nameen":"suzhou","disticten":"suzhou","distictcn":"苏州","provinceen":"jiangsu","provincecn":"江苏"}}}
> ```
>
>
参数字典中,lng:120.592412,lat:31.303564 两个参数正是苏州的经纬度。
### 解决的关键
先要查询到“任意指定”的城市或地址的经纬度,然后交由上述地址求得其中的 "areaid",最后就能够从网页 www.\*\*\*.com.cn/areaid+'.shtml'中爬取天气信息。
问题关键在于**城市经纬度**,这个可以提交给百度地图的免费api接口来获得:
>
> http://api.map.baidu.com/lbsapi/cloud/geocoding-api.htm
>
>
>
![](https://img-blog.csdnimg.cn/d9c7f8ac5b4d48f397b93c2f7f7bb4ed.png?x-oss-process=image/watermark,type_ZHJvaWRzYW5zZmFsbGJhY2s,shadow_50,text_Q1NETiBASGFubiBZYW5n,size_20,color_FFFFFF,t_70,g_se,x_16)
api免费,但要注册才能有key,就看这个公开的好不好使了
## 任意指定城市
来尝试一把,浏览器地址输入以下地址获取城市的经纬度:
>
> http://api.map.baidu.com/geocoder?address=**南京市江宁区**&output=json&key=37492c0ee6f924cb5e934fa08c6b1676
>
>
>
bingo! 百度地图这个公开的key居然还能用,返回的数据:
>
>
> ```
> {"status":"success","errmsg":"","timestamp":1622032653,"location":{"lng":118.846567,"lat":31.958527},"data":{"station":{"areaid":"101190104","category":"city",**"namecn":"江宁",** "nameen":"jiangning","disticten":"nanjing",**"distictcn":"南京",** "provinceen":"jiangsu","provincecn":"江苏"}}}
> ```
>
>
文末有福利领取哦~
---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
👉**一、Python所有方向的学习路线**
Python所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。![img](https://img-blog.csdnimg.cn/c67c0f87cf9343879a1278dfb067f802.png)
👉**二、Python必备开发工具**
![img](https://img-blog.csdnimg.cn/757ca3f717df4825b7d90a11cad93bc7.png)
👉**三、Python视频合集**
观看零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
![img](https://img-blog.csdnimg.cn/31066dd7f1d245159f21623d9efafa68.png)
👉 **四、实战案例**
光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。**(文末领读者福利)**
![img](https://img-blog.csdnimg.cn/e78afb3dcb8e4da3bae5b6ffb9c07ec7.png)
👉**五、Python练习题**
检查学习结果。
![img](https://img-blog.csdnimg.cn/280da06969e54cf180f4904270636b8e.png)
👉**六、面试资料**
我们学习Python必然是为了找到高薪的工作,下面这些面试题是来自阿里、腾讯、字节等一线互联网大厂最新的面试资料,并且有阿里大佬给出了权威的解答,刷完这一套面试资料相信大家都能找到满意的工作。
![img](https://img-blog.csdnimg.cn/a9d7c35e6919437a988883d84dcc5e58.png)
![img](https://img-blog.csdnimg.cn/5db8141418d544d3a8e9da4805b1a3f9.png)
👉因篇幅有限,仅展示部分资料,这份完整版的Python全套学习资料已经上传
**网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。**
**[需要这份系统化学习资料的朋友,可以戳这里获取](https://bbs.csdn.net/topics/618317507)**
**一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!**