首先上模板题题面
P3383 【模板】线性筛素数
【模板】线性筛素数
题目背景
本题已更新,从判断素数改为了查询第
k
k
k 小的素数
提示:如果你使用 cin
来读入,建议使用 std::ios::sync_with_stdio(0)
来加速。
题目描述
如题,给定一个范围 n n n,有 q q q 个询问,每次输出第 k k k 小的素数。
输入格式
第一行包含两个正整数 n , q n,q n,q,分别表示查询的范围和查询的个数。
接下来 q q q 行每行一个正整数 k k k,表示查询第 k k k 小的素数。
输出格式
输出 q q q 行,每行一个正整数表示答案。
样例 #1
样例输入 #1
100 5
1
2
3
4
5
样例输出 #1
2
3
5
7
11
提示
【数据范围】
对于
100
%
100\%
100% 的数据,
n
=
1
0
8
n = 10^8
n=108,
1
≤
q
≤
1
0
6
1 \le q \le 10^6
1≤q≤106,保证查询的素数不大于
n
n
n。
算法介绍
线性筛,如其名,可以在线性时间内求出给定范围内的所有素数,其时间复杂度为
O
(
n
)
O(n)
O(n)
下面给出线性筛的代码
vector<int> getPrime(int n)
{
vector<int> prime(n, 0), ans;
for (int i = 2; i <= n; i++)
{
if (!prime[i]) //如果当前数没有被筛去就是素数
ans.emplace_back(i);
for (int j = 0; j < ans.size() && i * ans[j] <= n; j++)
{
prime[i * ans[j]] = 1;
if (i % ans[j] == 0) //至少筛一个数,被最小质因子筛除后再跳出循环
break;
}
}
return ans;
}
我们需要使用一个标记数组来标记某个数是否已被筛去,另外用一个数组来记录答案
该算法的核心在于每个数只被它的最小质因子筛去,因此每个数只会被筛去一遍,所以时间复杂度是线性的
代码分析
外层循环枚举每个范围内的数,如果这个数没有被筛去(在标记数组中被标记),那么这个数就是素数,加入到答案中,然后我们要利用这个数作为一个因子去筛去以这个数和当前所有被记录的质数中的乘积。
如果这个数是质数,最多筛到当前质数最大值乘以该数
如果这个数是素数,最多筛到该数的最小质因子乘以该数
另外,如果被筛数超过了我们所求的范围要及时跳出循环
之所以将判断最小质因子的循环跳出语句放在标记语句后是因为至少要利用这个数进行一次筛法来标记它乘以它的最小质因子这个数
完整代码
// Problem: P3383 【模板】线性筛素数
// Contest: Luogu
// URL: https://www.luogu.com.cn/problem/P3383
// Memory Limit: 512 MB
// Time Limit: 2000 ms
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef pair<int, int> pi;
const int N = 2e5 + 10;
const int MOD = 1e9 + 7;
#define endl '\n'
#define PY puts("Yes")
#define PN puts("No")
vector<int> getPrime(int n)
{
vector<int> prime(n, 0), ans;
for (int i = 2; i <= n; i++)
{
if (!prime[i]) //如果当前数没有被筛去就是素数
ans.emplace_back(i);
for (int j = 0; j < ans.size() && i * ans[j] <= n; j++)
{
prime[i * ans[j]] = 1;
if (i % ans[j] == 0) //至少筛一个数,被最小质因子筛除后再跳出循环
break;
}
}
return ans;
}
int main()
{
ios::sync_with_stdio(false);
cin.tie(0);
int n, k;
cin >> n >> k;
vector<int> ans = getPrime(n);
while (k--)
{
int x;
cin >> x;
cout << ans[x - 1] << endl;
}
return 0;
}