刷题记录0526

72. 编辑距离 - 力扣(LeetCode)

看的题解,写了注释,为啥动态规划这么难啊啊啊啊,每道题都想不明白,感觉自己思路好差

class Solution {
public:
    int minDistance(string s, string t) {
        int n = s.length(), m = t.length();
        // 创建一个大小为(n+1)×(m+1)的二维数组f,用于存储子问题的解
        vector f(n + 1, vector<int>(m + 1));
        // 初始化第一行:将空字符串s转换为t的前j个字符所需的操作次数
        for (int j = 0; j < m; j++) {
            f[0][j + 1] = j + 1;
        }
        // 初始化第一列:将s的前i个字符转换为空字符串t所需的操作次数
        for (int i = 0; i < n; i++) {
            f[i + 1][0] = i + 1; 
            // 填充剩余的二维数组
            for (int j = 0; j < m; j++) {
                // 状态转移方程:如果当前字符相等,则无需操作;否则取三种操作中的最小值加1
                if (s[i] == t[j]) {
            // 当前字符匹配,无需操作,继承之前的编辑距离
                    f[i + 1][j + 1] = f[i][j];
                } 
                else {
                    // 当前字符不匹配,计算三种可能操作的最小代价
                    // 1. 删除操作:s[i] → t[j] 等价于 s[i-1] → t[j] 的编辑距离 + 1
                    int delete_cost = f[i][j + 1] + 1;
                    // 2. 插入操作:s[i] → t[j] 等价于 s[i] → t[j-1] 的编辑距离 + 1
                    int insert_cost = f[i + 1][j] + 1;
                    // 3. 替换操作:s[i] → t[j] 等价于 s[i-1] → t[j-1] 的编辑距离 + 1
                    int replace_cost = f[i][j] + 1;
                    // 取三种操作的最小值
                    f[i + 1][j + 1] = min(delete_cost, min(insert_cost,replace_cost));
                }
            }
        }
        // 返回将整个s转换为整个t所需的最少操作次数
        return f[n][m];
    }
};

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值