看的题解,写了注释,为啥动态规划这么难啊啊啊啊,每道题都想不明白,感觉自己思路好差
class Solution {
public:
int minDistance(string s, string t) {
int n = s.length(), m = t.length();
// 创建一个大小为(n+1)×(m+1)的二维数组f,用于存储子问题的解
vector f(n + 1, vector<int>(m + 1));
// 初始化第一行:将空字符串s转换为t的前j个字符所需的操作次数
for (int j = 0; j < m; j++) {
f[0][j + 1] = j + 1;
}
// 初始化第一列:将s的前i个字符转换为空字符串t所需的操作次数
for (int i = 0; i < n; i++) {
f[i + 1][0] = i + 1;
// 填充剩余的二维数组
for (int j = 0; j < m; j++) {
// 状态转移方程:如果当前字符相等,则无需操作;否则取三种操作中的最小值加1
if (s[i] == t[j]) {
// 当前字符匹配,无需操作,继承之前的编辑距离
f[i + 1][j + 1] = f[i][j];
}
else {
// 当前字符不匹配,计算三种可能操作的最小代价
// 1. 删除操作:s[i] → t[j] 等价于 s[i-1] → t[j] 的编辑距离 + 1
int delete_cost = f[i][j + 1] + 1;
// 2. 插入操作:s[i] → t[j] 等价于 s[i] → t[j-1] 的编辑距离 + 1
int insert_cost = f[i + 1][j] + 1;
// 3. 替换操作:s[i] → t[j] 等价于 s[i-1] → t[j-1] 的编辑距离 + 1
int replace_cost = f[i][j] + 1;
// 取三种操作的最小值
f[i + 1][j + 1] = min(delete_cost, min(insert_cost,replace_cost));
}
}
}
// 返回将整个s转换为整个t所需的最少操作次数
return f[n][m];
}
};