C++:博弈(尼姆博奕)(学不会来找我)

前言

有一种很有意思的游戏,就是有物体若干堆,可以是火柴棍或是围棋子等等
均可。两个人轮流从堆中取物体若干,规定最后取光物体者取胜。这是我国民间
很古老的一个游戏,别看这游戏极其简单,却蕴含着深刻的数学原理。下面我们
来分析一下要如何才能够取胜。

首先,一道例题:

例题

大学时光是浪漫的,女生是浪漫的,圣诞更是浪漫的,但是Rabbit和Grass这两个大学女生在今年的圣诞节却表现得一点都不浪漫:不去逛商场,不去逛公园,不去和AC男约会,两个人竟然猫在寝舍下棋……
说是下棋,其实只是一个简单的小游戏而已,游戏的规则是这样的:
1、 棋盘包含1*n个方格,方格从左到右分别编号为0,1,2,…,n-1;
2、 m个棋子放在棋盘的方格上,方格可以为空,也可以放多于一个的棋子;
3、 双方轮流走棋;
4、 每一步可以选择任意一个棋子向左移动到任意的位置(可以多个棋子位于同一个方格),当然,任何棋子不能超出棋盘边界;
5、 如果所有的棋子都位于最左边(即编号为0的位置),则游戏结束,并且规定最后走棋的一方为胜者。

对于本题,你不需要考虑n的大小(我们可以假设在初始状态,棋子总是位于棋盘的适当位置)。下面的示意图即为一个1*15的棋盘,共有6个棋子,其中,编号8的位置有两个棋子。

在这里插入图片描述

大家知道,虽然偶尔不够浪漫,但是Rabbit和Grass都是冰雪聪明的女生,如果每次都是Rabbit先走棋,请输出最后的结果。

输入输出格式:

输入格式:

输入数据包含多组测试用例,每个测试用例占二行,首先一行包含一个整数m(0<=m<=1000),表示本测试用例的棋子数目,紧跟着的一行包含m个整数Ki(i=1…m; 0<=Ki<=1000),分别表示m个棋子初始的位置,m=0则结束输入。

输出格式:

如果Rabbit能赢的话,请输出“Rabbit Win!”,否则请输出“Grass Win!”,每个实例的输出占一行。

输入输出样例

输入样例#1:

2
3 5
3
3 5 6
0

输出样例#1:

Rabbit Win!
Grass Win!

这题需要用到尼姆博奕,大家一起来看看吧。

尼姆博奕(Nimm Game):有三堆各若干个物品,两个人轮流从某一堆取任意多的物品,规定每次至少取一个,多者不限,最后取光者得胜。这种情况最有意思,它与二进制有密切关系,我们用(a,b,c)表示某种局势,首先(0,0,0)显然是奇异局势,无论谁面对奇异局势,都必然失败。第二种奇异局势是(0,n,n),只要与对手拿走一样多的物品,最后都将导致(0,0,0)。仔细分析一下,(1,2,3)也是奇异局势,(我先拿之后,)无论对手如何拿,接下来都可以变为
(0,n,n)的情形。计算机算法里面有一种叫做按位模 2 加,也叫做异或的运算,我们用符号(+)表示这种运算。这种运算和一般加法不同的一点是 1+1=0。先看(1,2,3)的按位模 2 加的结果:
1 =二进制 01
2 =二进制 10
3 =二进制 11 (+)
———————
0 =二进制 00 (注意不进位)
对于奇异局势(0,n,n)也一样,结果也是 0。
任何奇异局势(a,b,c)都有 a(+)b(+)c =0。
如果我们面对的是一个非奇异局势(a,b,c),要如何变为奇异局势呢?
假设 a < b < c,我们只要将 c 变为 a(+)b 即可,因为有如下的运算结果:
a(+)b(+)(a(+)b)=(a(+)a)(+)(b(+)b)= 0(+)0 = 0。要将 c 变为 a(+)b,只要从 c 中减去 c-(a(+)b)即可。
另一段文字摘自:
http://blog.csdn.net/logic_nut/article/details/4711489
更严谨的定义是:

  1. 无法进行任何移动的局面(也就是 terminal position)是 P-position;
  2. 可以移动到 P-position 的局面是 N-position;
  3. 所有移动都导致 N-position 的局面是 P-position。直接说结论好了。(Bouton’s Theorem)对于一个 Nim 游戏的局面
    (a1,a2,…,an),它是 P-position 当且仅当 a1a2an=0,其中表示异或(xor)运算。怎么样,是不是很神奇?我看到它的时候也觉得很神奇,完全没有道理的和异或运算扯上了关系。但这个定理的证明却也不复杂,基本上就是按照两种position 的证明来的。

根据定义,证明一种判断 position 的性质的方法的正确性,只需证明三个命题:

  1. 这个判断将所有 terminal position 判为 P-position;
  2. 根据这个判断被判为 N-position的局面一定可以移动到某个 P-position;
  3. 根据这个判断被判为 P-position 的局面无法移动到某个 P-position。
    第一个命题显然,terminal position 只有一个,就是全 0,异或仍然是 0。
    第二个命题,对于某个局面(a1,a2,…,an),若 a1a2…^an!=0,一定存在某个合法的移动,将 ai 改变成 ai’后满足 a1a2ai’an=0。不妨设a1a2an=k,则一定存在某个 ai,它的二进制表示在 k 的最高位上是 1(否则 k 的最高位那个 1 是怎么得到的)。这时 ai^k<ai 一定成立。则我们可以将 ai改变成 ai’=ai^k,此时 a1a2ai’an=a1a2an^k=0。
    (Nim 游戏的规则就是:每次选择一堆数量为 k 的石子,可以把它变成 0、变成 1、……、变成 k-1,但绝对不能保持 k 不变。因为 ai^k 比 ai 小,所以ai 一定可以变成 ai^k。)
    第三个命题,对于某个局面(a1,a2,…,an),若 a1a2…^an=0,一定不存在某个合法的移动,将 ai 改变成 ai’后满足 a1a2ai’…^an=0。因为异或运算满足消去率,由 a1a2an=a1a2ai’an 可以得 到 ai=ai’。所以将 ai 改变成 ai’不是一个合法的移动。
    根据这个定理,我们可以在 O(n)的时间内判断一个 Nim 的局面的性质,且如果它是 N-position,也可以在 O(n)的时间内找到所有的必胜策略。Nim 问题就这样基本上完美的解决了。

以上就是尼姆博弈的全部了,来看看代码吧。

AC代码

#include<bits/stdc++.h>
using namespace std;
int m,a[100001];
int main(){
	while(cin>>m){
		if(m==0){
			return 0;
		}
		int s=0;
		for(int i=0;i<m;i++){
			cin>>a[i];
			s^=a[i];
		}
		if(s){
			cout<<"Rabbit Win!"<<endl;
		} else{
			cout<<"Grass Win!"<<endl;
		}
	}
	return 0;
}  
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值