二叉树的定义
树(Tree)是n(n≥0)个节点的有限集。
在任意一棵树中:
(1)有且仅有一个特定的称为根(Root)的节点;
(2)当n>1时,其余节点可分m(m>0)为个互不相交的有限集T1,T2,…,Tm;
其中每一个集合本身又是一棵树,并且称为根的子树(SubTree)。
网上有很多介绍,这就不具体展开。
构造一个二叉树并测试
python:
定义树节点.
class TreeNode(object):
def __init__(self, x):
self.val = x
self.left = None
self.right = None
#将输入的列表转化为一棵二叉树,返回根节点
def deserialize(data):
def dfs(data):
val = data.pop(0)
if val == 'null':
return None
node = TreeNode(val)
node.left = dfs(data)
node.right = dfs(data)
return node
return dfs(data)
有两种构造方法,使用下面的函数构造更加简单。
nodelist=[TreeNode(i)for i in [4,2,7,1,3,5,8]]
nodelist[0].left=nodelist[1]
nodelist[0].right=nodelist[2]
nodelist[1].left=nodelist[3]
nodelist[1].right=nodelist[4]
nodelist[2].left=nodelist[5]
nodelist[2].right=nodelist[6]
root = nodelist[0]
第二种
#测试2:调用以上deserialize函数,给定的列表需要包含所有的null的叶子结点
data = [4, 2, 1, 'null', 'null', 3, 'null','null', 7, 5, 'null', 'null', 8, 'null', 'null']
root = deserialize(data)
也可以采用python自带的库来实现这一操作 binarytree。
具体见文章:binarytree
遍历方式
记忆遍历方式,一言以蔽之。什么在中间就是什么遍历,其他的就是左边先开始。
144. 二叉树的前序遍历
二叉树的前序遍历
这里是前序遍历,那就是左边的在中间,就是中 左 右。
使用递归的方式来编写,具体流程分为三个:
- 确定递归函数参数和返回值
- 确定终止条件
- 确定单层递归逻辑
见如下具体代码:
class Solution:
def preorderTraversal(self, root: Optional[TreeNode]) -> List[int]:
res=[]
def traversal(root): #递归参数
if not root : # 终止条件
return
res.append(root.val) #这三行就是递归逻辑
traversal(root.left)
traversal(root.right)
traversal(root)
return res
145. 二叉树的后序遍历
class Solution:
def postorderTraversal(self, root: Optional[TreeNode]) -> List[int]:
res=[]
def traveral(root):
if not root:
return
traveral(root.left)
traveral(root.right)
res.append(root.val)
traveral(root)
return res
94. 二叉树的中序遍历
class Solution:
def inorderTraversal(self, root: Optional[TreeNode]) -> List[int]:
res=[]
def traveral(root):
if not root:
return
traveral(root.left)
res.append(root.val)
traveral(root.right)
traveral(root)
return res