极坐标系
当定义 2d 形状的时候,我们通常在笛卡尔坐标系 (x,y) 中进行定义。通过指定 x 轴和 y 轴上离原点的距离,来定义图形形状。而另一个我们可选用的极坐标系,则是定义离原点的角度和半径长度。
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-zkilHpFp-1630676162403)(https://user-gold-cdn.xitu.io/2018/2/8/161747640215b0a5?imageView2/0/w/1280/h/960/ignore-error/1)]
笛卡尔坐标系(左边)vs 极坐标系(右边)
我们可以通过这两条公式进行极坐标系和笛卡尔坐标系之间的转换:
val x = radius * Math.cos(angle);
val y = radius * Math.sin(angle);
我强烈推荐读下面这篇文章以了解更多关于极坐标系的内容:
为了能生成规则的多边形(例如每个内角的度数相同),极坐标系能起到非常大的作用。为了生成想要的边数,你可以通过计算求出对应的度数(因为内角度数和是 360 度),然后借助同一个半径,再利用这个度数的多个倍数关系去描绘出每个点。 你可以用图形 API 将这些点坐标转化为笛卡尔坐标。下面是一个通过给定的边数和半径生成多边形 Path
的函数:
fun createPath(sides: Int, radius: Float): Path {
val path = Path()
val angle = 2.0 * Math.PI / sides
path.moveTo(
cx + (radius * Math.cos(0.0)).toFloat(),
cy + (radius * Math.sin(0.0)).toFloat())
for (i in 1 until sides) {
path.lineTo(
cx + (radius * Math.cos(angle * i)).toFloat(),
cy + (radius * Math.sin(angle * i)).toFloat())
}
path.close()
return path
}
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-XJuEkUk6-1630676162405)(https://user-gold-cdn.xitu.io/2018/2/8/161747645588949e?imageslim)]
所以为了生成想要的多边形组合,我们创建了一个有不同边数、半径和颜色的多边形 list 集合。Polygon
是一个持有这些信息和计算相应 Path