OpenMMLab AI实战营打卡-第3课

本文讲述了在本地使用mmcv和mmcls进行图像识别调试的过程,虽然遇到模块缺失和输入错误等挑战,但凭借C++和MATLAB的基础,作者成功进行python深度学习项目的上手,并强调代码阅读在提升编程能力中的作用。
摘要由CSDN通过智能技术生成

今天主讲了代码以及北京超算的使用教程,由于申请的北京超算还没到,于是我在本地配给了mmcv以及mmcls跟着项目做了一些简单的识别以及调试。在这其中其实碰到了很多问题,很多package、命令都是第一次使用,出现了很多问题如模块的缺失、输入位置错误等等,但我也相信具有C++和MATLAB程序设计基础,直接上手python的深度学习项目还是能够自然而然的迁移的,也可以多多的代码阅读中增加码力

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值