PTA .6-7 统计某类完全平方数

 一.题目

本题要求实现一个函数,判断任一给定整数N是否满足条件:它是完全平方数,又至少有两位数字相同,如144、676等。

函数接口定义:

int IsTheNumber ( const int N );

其中N是用户传入的参数。如果N满足条件,则该函数必须返回1,否则返回0。

裁判测试程序样例:

#include <stdio.h>
#include <math.h>

int IsTheNumber ( const int N );

int main()
{
    int n1, n2, i, cnt;

    scanf("%d %d", &n1, &n2);
    cnt = 0;
    for ( i=n1; i<=n2; i++ ) {
        if ( IsTheNumber(i) )
            cnt++;
    }
    printf("cnt = %d\n", cnt);

    return 0;
}

/* 你的代码将被嵌在这里 */

输入样例:

105 500

结尾无空行

输出样例:

cnt = 6

结尾无空行

 二.思路

1.要求是完全平方数则 可以用sqrt 或 pow 函数 ,计算出其的(int)算术平方根,若算术平方根的平方  !=  N,则肯定不符合题目(注意:题目中头文件包括math.h,可以用sqrt 或 pow 函数;若没有头文件,则需用循环实现完全平方数的验证)。

2.要求至少要两个数字相同的完全平方数,则N至少为三位整数。

3.至少要两个数字相同,可以用一个数组存储N的0~9出现的个数,最后若有a[i] >= 2,则符合条件。

三.代码实现

int IsTheNumber ( const int N )
{
	int  i,n,a[10]= {0},k = 0,m = N;
    // 需要对a[10]初始化,a[i] 代表 i 出现的次数
	while( m!= 0)
	{
		 n = m %10;
		 a[n] ++;
		 m = m / 10;
		 
	}//注意这里不能改变N的值,因为const int N 相当于N是一个整形常数
    for( i =0 ;i<10 ;i++)
	{
		if(a[i] >= 2 )
		{
			k =  1;
		 } 
	}
    if(N < 0)
    {
        return 0;
    }
    /*
    //若没有math.h头文件
	for(i =0;i<N ;i++)
	{
		if( i * i == N )
		{
			break;
		}
	}
	
	if(i == N)
	{
		return 0;
	}
	
	else
	{
		if(k)
		{
			return 1;
		}
		else
		{
			return 0;
		}
	}
	*/
    n = sqrt(N);
	if( n *n == N )
	{
		if(k )
		{
			return 1;
		}
		else
		{
			return 0;
		}
		
	}
	else
	{
		return 0;
	}
	
	
} 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值