ConcurrentHashMap底层原理

 1、1.7版本的底层实现

ConcurrentHashMap在1.7版本中数据结构是segement+数组+链表,1.7版本默认有16个segement,并且不允许扩容,扩容只能在segement内部对其table做扩容。

1.1 put方法

put方法中操作步骤:

(1)由于相对于HashMap外面包了一层segement,所以需要通过key的hash,计算处在哪个segement中,确认之后,调用segement的put操作。

(2)在segement中对table的逻辑实际上和HashMap的put操作一样。而在这之前需要先获取到以segement为单位的锁,这里使用的ReentrantLock加锁,为了减少上下文切换,先尝试获取锁,循环次数为单核是1次,多核是64次,如果尝试失败,则直接调用lock阻塞。

(3)获取锁之后,对key计算相应的hash值,然后通过hash & table.length-1计算可以获得到在hash表中中相应的桶位置,循环遍历其链表,比较其key值,如果相等,则更新其value的值

(4)如果不相等,则判断是否需要扩容,其中扩容的判断条件是,其size>table.length*0.75.其中0.75是负载因子,如果超过,则扩容。没有超过,则头插入的方式,插入到链表表头。

public V put(K key, V value) {
    Segment<K,V> s;
    if (value == null)
        throw new NullPointerException();
    // 1. 计算 key 的 hash 值
    int hash = hash(key);
    // 2. 根据 hash 值找到 Segment 数组中的位置 j
    //    hash 是 32 位,无符号右移 segmentShift(28) 位,剩下高 4 位,
    //    然后和 segmentMask(15) 做一次与操作,也就是说 j 是 hash 值的高 4 位,也就是槽的数组下标
    int j = (hash >>> segmentShift) & segmentMask;
    // 刚刚说了,初始化的时候初始化了 segment[0],但是其他位置还是 null,
    // ensureSegment(j) 对 segment[j] 进行初始化
    if ((s = (Segment<K,V>)UNSAFE.getObject          // nonvolatile; recheck
         (segments, (j << SSHIFT) + SBASE)) == null) //  in ensureSegment
        s = ensureSegment(j);
    // 3. 插入新值到 槽 s 中
    return s.put(key, hash, value, false);
}
final V put(K key, int hash, V value, boolean onlyIfAbsent) {
    // 在往该 segment 写入前,需要先获取该 segment 的独占锁
    //    先看主流程,后面还会具体介绍这部分内容
    HashEntry<K,V> node = tryLock() ? null :
        scanAndLockForPut(key, hash, value);
    V oldValue;
    try {
        // 这个是 segment 内部的数组
        HashEntry<K,V>[] tab = table;
        // 再利用 hash 值,求应该放置的数组下标
        int index = (tab.length - 1) & hash;
        // first 是数组该位置处的链表的表头
        HashEntry<K,V> first = entryAt(tab, index);

        // 下面这串 for 循环虽然很长,不过也很好理解,想想该位置没有任何元素和已经存在一个链表这两种情况
        for (HashEntry<K,V> e = first;;) {
            if (e != null) {
                K k;
                if ((k = e.key) == key ||
                    (e.hash == hash && key.equals(k))) {
                    oldValue = e.value;
                    if (!onlyIfAbsent) {
                        // 覆盖旧值
                        e.value = value;
                        ++modCount;
                    }
                    break;
                }
                // 继续顺着链表走
                e = e.next;
            }
            else {
                // node 到底是不是 null,这个要看获取锁的过程,不过和这里都没有关系。
                // 如果不为 null,那就直接将它设置为链表表头;如果是null,初始化并设置为链表表头。
                if (node != null)
                    node.setNext(first);
                else
                    node = new HashEntry<K,V>(hash, key, value, first);

                int c = count + 1;
                // 如果超过了该 segment 的阈值,这个 segment 需要扩容
                if (c > threshold && tab.length < MAXIMUM_CAPACITY)
                    rehash(node); // 扩容后面也会具体分析
                else
                    // 没有达到阈值,将 node 放到数组 tab 的 index 位置,
                    // 其实就是将新的节点设置成原链表的表头
                    setEntryAt(tab, index, node);
                ++modCount;
                count = c;
                oldValue = null;
                break;
            }
        }
    } finally {
        // 解锁
        unlock();
    }
    return oldValue;
}
private void rehash(HashEntry<K,V> node) {
    HashEntry<K,V>[] oldTable = table;
    int oldCapacity = oldTable.length;
    // 2 倍
    int newCapacity = oldCapacity << 1;
    threshold = (int)(newCapacity * loadFactor);
    // 创建新数组
    HashEntry<K,V>[] newTable =
        (HashEntry<K,V>[]) new HashEntry[newCapacity];
    // 新的掩码,如从 16 扩容到 32,那么 sizeMask 为 31,对应二进制 ‘000...00011111’
    int sizeMask = newCapacity - 1;

    // 遍历原数组,老套路,将原数组位置 i 处的链表拆分到 新数组位置 i 和 i+oldCap 两个位置
    for (int i = 0; i < oldCapacity ; i++) {
        // e 是链表的第一个元素
        HashEntry<K,V> e = oldTable[i];
        if (e != null) {
            HashEntry<K,V> next = e.next;
            // 计算应该放置在新数组中的位置,
            // 假设原数组长度为 16,e 在 oldTable[3] 处,那么 idx 只可能是 3 或者是 3 + 16 = 19
            int idx = e.hash & sizeMask;
            if (next == null)   // 该位置处只有一个元素,那比较好办
                newTable[idx] = e;
            else { // Reuse consecutive sequence at same slot
                // e 是链表表头
                HashEntry<K,V> lastRun = e;
                // idx 是当前链表的头节点 e 的新位置
                int lastIdx = idx;

                // 下面这个 for 循环会找到一个 lastRun 节点,这个节点之后的所有元素是将要放到一起的
                for (HashEntry<K,V> last = next;
                     last != null;
                     last = last.next) {
                    int k = last.hash & sizeMask;
                    if (k != lastIdx) {
                        lastIdx = k;
                        lastRun = last;
                    }
                }
                // 将 lastRun 及其之后的所有节点组成的这个链表放到 lastIdx 这个位置
                newTable[lastIdx] = lastRun;
                // 下面的操作是处理 lastRun 之前的节点,
                //    这些节点可能分配在另一个链表中,也可能分配到上面的那个链表中
                for (HashEntry<K,V> p = e; p != lastRun; p = p.next) {
                    V v = p.value;
                    int h = p.hash;
                    int k = h & sizeMask;
                    HashEntry<K,V> n = newTable[k];
                    newTable[k] = new HashEntry<K,V>(h, p.key, v, n);
                }
            }
        }
    }
    // 将新来的 node 放到新数组中刚刚的 两个链表之一 的 头部
    int nodeIndex = node.hash & sizeMask; // add the new node
    node.setNext(newTable[nodeIndex]);
    newTable[nodeIndex] = node;
    table = newTable;
}

其中扩容的操作是:

(1)创建一个新的hash表,长度为原表的两倍,然后将oldtable的数据拷贝到新表中。那怎么拷贝呢?

(2)因为拷贝到新表,hash值需要重新计算,key的hash和新表的length-1进行计算,然后插入到新表中,如果hash桶存在链表,则使用头插入的方式,插入到新表中。这会导致数据在新表中是倒置的。

(3)将新表赋值给table,

相对于1.7的HashMap扩容有一个优化的点,不是每个Node都是重新计算hash然后头插入到表头中,而是计算链表中第一个后续所有的节点index不变的节点,找到之后,只需要处理此节点之前的Node头插入即可。此时最坏的情况是第一个后继节点是最后一个。最好的情况是第一个节点就是后继节点即后面所有的index位置都不变。

由于并发已经加锁,所以此处不存在死循环的情况。

1.2 get方法

get方法还是很简单,先找到相应的segement,然后调用segment中的get方法,遍历内部的table。遍历table过程就和HashMap的逻辑是一样的。通过key的hash获取到hash表中的位置,然后遍历其列表,通过比较key,如果相等则返回其entry对象。

public V get(Object key) {
    Segment<K,V> s; // manually integrate access methods to reduce overhead
    HashEntry<K,V>[] tab;
    // 1. hash 值
    int h = hash(key);
    long u = (((h >>> segmentShift) & segmentMask) << SSHIFT) + SBASE;
    // 2. 根据 hash 找到对应的 segment
    if ((s = (Segment<K,V>)UNSAFE.getObjectVolatile(segments, u)) != null &&
        (tab = s.table) != null) {
        // 3. 找到segment 内部数组相应位置的链表,遍历
        for (HashEntry<K,V> e = (HashEntry<K,V>) UNSAFE.getObjectVolatile
                 (tab, ((long)(((tab.length - 1) & h)) << TSHIFT) + TBASE);
             e != null; e = e.next) {
            K k;
            if ((k = e.key) == key || (e.hash == h && key.equals(k)))
                return e.value;
        }
    }
    return null;
}

2、1.8版本的底层实现

1.8版本中的结构和HashMap中的结构是一样的,是数组+链表+红黑树,使用CAS和Synchronized来处理并发

2.1 put方法

下面1-5步实际上逻辑和HashMap中是一样的,只是使用了CAS操作对节点进行了赋值,使用Synchronized对表头进行加锁。而不同的点,是加一条逻辑6

(1)计算相应key的hash,然后hash&table.length-1,获取在数组中桶的位置,如果为空则直接new Node插入即可。

(2)如果table[i] != null。则判断此key是否相等,如果相等,则更新老的值

(3)如果table[i]是树节点,将此节点插入到树中

(4)如果table[i]是链表,则遍历链表,如果链表找到,则更新老的值,如果没有找到则使用尾插入插入其节点,插入之后,当节点个数大于8个,则转换成红黑树。此处和HashMap有一点不同的是如果table的长度<64,则对数组进行扩容,而不是转换成红黑树

(5)插入之后,查看size是否大于阈值,如果符合则resize。

(6)判断头节点的hash是否是MOVE,意思是此表在进行扩容,需要此线程加入进来一起帮忙扩容。helpTransfer此处是帮助迁移。

final V putVal(K key, V value, boolean onlyIfAbsent) {
        if (key == null || value == null) throw new NullPointerException();
        int hash = spread(key.hashCode());
        int binCount = 0;
        for (Node<K,V>[] tab = table;;) {
            Node<K,V> f; int n, i, fh;
            if (tab == null || (n = tab.length) == 0)
                tab = initTable();
            else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {
                if (casTabAt(tab, i, null,
                             new Node<K,V>(hash, key, value, null)))
                    break;                   // no lock when adding to empty bin
            }
            else if ((fh = f.hash) == MOVED)
                tab = helpTransfer(tab, f);
            else {
                V oldVal = null;
                synchronized (f) {
                    if (tabAt(tab, i) == f) {
                        if (fh >= 0) {
                            binCount = 1;
                            for (Node<K,V> e = f;; ++binCount) {
                                K ek;
                                if (e.hash == hash &&
                                    ((ek = e.key) == key ||
                                     (ek != null && key.equals(ek)))) {
                                    oldVal = e.val;
                                    if (!onlyIfAbsent)
                                        e.val = value;
                                    break;
                                }
                                Node<K,V> pred = e;
                                if ((e = e.next) == null) {
                                    pred.next = new Node<K,V>(hash, key,
                                                              value, null);
                                    break;
                                }
                            }
                        }
                        else if (f instanceof TreeBin) {
                            Node<K,V> p;
                            binCount = 2;
                            if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key,
                                                           value)) != null) {
                                oldVal = p.val;
                                if (!onlyIfAbsent)
                                    p.val = value;
                            }
                        }
                    }
                }
                if (binCount != 0) {
                    if (binCount >= TREEIFY_THRESHOLD)
                        treeifyBin(tab, i);
                    if (oldVal != null)
                        return oldVal;
                    break;
                }
            }
        }
        addCount(1L, binCount);
        return null;
    }

2.2 扩容方法

ConcurrentHashMap扩容方式是多线程扩容,将就表拆分成多个迁移,分配给多个线程迁移,这些线程从哪里来,就是做put,做resize方法的主线程。对于链表的链表和数的迁移,比较HashMap是有一些改动的,但是总体的逻辑是不变的,但是总的将旧表迁移到新表的逻辑还是不变的。既然拆分多个线程迁移,那每个线程迁移多少个节点,此逻辑依赖于transferIndex,它是指向table表的最后位置,然后迁移范围为stride,第一个线程迁移stride后,transferIndex则指向transferIndex-stride位置,第二个线程在从此位置开始迁移stride,直到迁移完成。

(1)先对stride进行赋值,然后对nextTable新表进行初始化,第一个线程才需要,后续线程不需要初始化新表

(2)新建一个ForwardingNode,内部存放的nextTable,并且hash为MOVE。对象名为fwd

(2)遍历oldtable中transferIndex到transferIndex-stride位置的数据,然后将数据迁移到新表中。遍历桶中,如果此节点为空,则直接存放fwd。

(3)如果此节点是树节点,直接迁移此树到新表中,并且在表头存放fwd

(4)如果此节点为链表,此时有一个知识点,新表的长度为老表中的2倍,相当于2进制中的高位为1,也就是说链表中hash的二进制高位为1 的放到j+oldCap中,高位为0的则放到j中,并且是顺序放置。并且在表头存放fwd

(5)fwd表示此节点已经处理完成

(6)当迁移结束后,则将nextTable赋值给table,由于是volatile修饰,则对于其他线程是可见的。并且将nextTable赋值为null,为了下次扩容。

private final void transfer(Node<K,V>[] tab, Node<K,V>[] nextTab) {
        int n = tab.length, stride;
        if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE)
            stride = MIN_TRANSFER_STRIDE; // subdivide range
        if (nextTab == null) {            // initiating
            try {
                @SuppressWarnings("unchecked")
                Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n << 1];
                nextTab = nt;
            } catch (Throwable ex) {      // try to cope with OOME
                sizeCtl = Integer.MAX_VALUE;
                return;
            }
            nextTable = nextTab;
            transferIndex = n;
        }
        int nextn = nextTab.length;
        ForwardingNode<K,V> fwd = new ForwardingNode<K,V>(nextTab);
        boolean advance = true;
        boolean finishing = false; // to ensure sweep before committing nextTab
        for (int i = 0, bound = 0;;) {
            Node<K,V> f; int fh;
            while (advance) {
                int nextIndex, nextBound;
                if (--i >= bound || finishing)
                    advance = false;
                else if ((nextIndex = transferIndex) <= 0) {
                    i = -1;
                    advance = false;
                }
                else if (U.compareAndSwapInt
                         (this, TRANSFERINDEX, nextIndex,
                          nextBound = (nextIndex > stride ?
                                       nextIndex - stride : 0))) {
                    bound = nextBound;
                    i = nextIndex - 1;
                    advance = false;
                }
            }
            if (i < 0 || i >= n || i + n >= nextn) {
                int sc;
                if (finishing) {
                    nextTable = null;
                    table = nextTab;
                    sizeCtl = (n << 1) - (n >>> 1);
                    return;
                }
                if (U.compareAndSwapInt(this, SIZECTL, sc = sizeCtl, sc - 1)) {
                    if ((sc - 2) != resizeStamp(n) << RESIZE_STAMP_SHIFT)
                        return;
                    finishing = advance = true;
                    i = n; // recheck before commit
                }
            }
            else if ((f = tabAt(tab, i)) == null)
                advance = casTabAt(tab, i, null, fwd);
            else if ((fh = f.hash) == MOVED)
                advance = true; // already processed
            else {
                synchronized (f) {
                    if (tabAt(tab, i) == f) {
                        Node<K,V> ln, hn;
                        if (fh >= 0) {
                            int runBit = fh & n;
                            Node<K,V> lastRun = f;
                            for (Node<K,V> p = f.next; p != null; p = p.next) {
                                int b = p.hash & n;
                                if (b != runBit) {
                                    runBit = b;
                                    lastRun = p;
                                }
                            }
                            if (runBit == 0) {
                                ln = lastRun;
                                hn = null;
                            }
                            else {
                                hn = lastRun;
                                ln = null;
                            }
                            for (Node<K,V> p = f; p != lastRun; p = p.next) {
                                int ph = p.hash; K pk = p.key; V pv = p.val;
                                if ((ph & n) == 0)
                                    ln = new Node<K,V>(ph, pk, pv, ln);
                                else
                                    hn = new Node<K,V>(ph, pk, pv, hn);
                            }
                            setTabAt(nextTab, i, ln);
                            setTabAt(nextTab, i + n, hn);
                            setTabAt(tab, i, fwd);
                            advance = true;
                        }
                        else if (f instanceof TreeBin) {
                            TreeBin<K,V> t = (TreeBin<K,V>)f;
                            TreeNode<K,V> lo = null, loTail = null;
                            TreeNode<K,V> hi = null, hiTail = null;
                            int lc = 0, hc = 0;
                            for (Node<K,V> e = t.first; e != null; e = e.next) {
                                int h = e.hash;
                                TreeNode<K,V> p = new TreeNode<K,V>
                                    (h, e.key, e.val, null, null);
                                if ((h & n) == 0) {
                                    if ((p.prev = loTail) == null)
                                        lo = p;
                                    else
                                        loTail.next = p;
                                    loTail = p;
                                    ++lc;
                                }
                                else {
                                    if ((p.prev = hiTail) == null)
                                        hi = p;
                                    else
                                        hiTail.next = p;
                                    hiTail = p;
                                    ++hc;
                                }
                            }
                            ln = (lc <= UNTREEIFY_THRESHOLD) ? untreeify(lo) :
                                (hc != 0) ? new TreeBin<K,V>(lo) : t;
                            hn = (hc <= UNTREEIFY_THRESHOLD) ? untreeify(hi) :
                                (lc != 0) ? new TreeBin<K,V>(hi) : t;
                            setTabAt(nextTab, i, ln);
                            setTabAt(nextTab, i + n, hn);
                            setTabAt(tab, i, fwd);
                            advance = true;
                        }
                    }
                }
            }
        }
    }

2.3 get方法

get方法相对于hashMap多了一步find操作,如果key的hash<0则表示此table正在扩容,此节点为ForwardingNode,需要从ForwardingNode节点中的nextTable查询相应的值。

public V get(Object key) {
        Node<K,V>[] tab; Node<K,V> e, p; int n, eh; K ek;
        int h = spread(key.hashCode());
        if ((tab = table) != null && (n = tab.length) > 0 &&
            (e = tabAt(tab, (n - 1) & h)) != null) {
            if ((eh = e.hash) == h) {
                if ((ek = e.key) == key || (ek != null && key.equals(ek)))
                    return e.val;
            }
            else if (eh < 0)
                return (p = e.find(h, key)) != null ? p.val : null;
            while ((e = e.next) != null) {
                if (e.hash == h &&
                    ((ek = e.key) == key || (ek != null && key.equals(ek))))
                    return e.val;
            }
        }
        return null;
    }

总结1.7和1.8的区别:

1、并发结构不一致,1.7是segement+数组+链表,1.8是数组+链表+红黑树

2、锁机制不一样,1.7是ReentRantLock机制对segement加锁,而1.8则通过CAS和Synchronized对表头进行加锁

3、扩容方式不一样,1.7是对segement内部的表进行扩容,并且遍历oldtable,然后将数据迁移到新表中,而1.8使用多线程进行迁移,将旧表拆分成多个任务,分配给多个线程进行迁移。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值