并查集(一种技巧)
- 实用的树形数据结构
- 主要处理不相交集合的查询与合并
- 选出集合中的某个元素为代表,集合中具体包含哪些元素不重要
- 将如下一系列操作复杂度降到常数级:
- 对于给定的元素,可以很快找到该元素所在集合
- 可以很快合并两个元素所在集合
- 用树根当一系列数字的代表
- 初始化函数的目的是使每个元素都是以自身为代表
表示:
不交集森林把每一个集合以一棵树表示,每一个节点即是一个元素。节点保存着到它的父节点的引用,树的根节点则保存一个空引用或者到自身的引用或者其他无效值,以表示自身为根节点。这个数据结构最早由Bernard A. Galler和Michael J. Fischer于1964年提出,但是经过了数年才完成了精确的分析。
优化:路径压缩
将长链压缩为较少层数
SHOW ME THE CODE
#include<stdio.h>
#define MAXSIZE 5
//为举例方便此处以5为最大长度
int uset[MAXSIZE];//定义一个足够长数组,用下标表示节点
/*构造并查集*/
void makeSet(int size);//size为节点数【初始化】
void unite(int x,int y);//【并】
int find(int i);//【查】
int main(int argc, char** argv)
{
makeSet(MAXSIZE);//初始化一个并查集,使每一个元素指向自己
unite(3,4);//合并元素3和4
int i = find(3);//i为3的根节点值
printf("%d\n",i);
}
void makeSet(int size)
{
for(int i = 0;i < size; i++) {
//每一个元素都指向自己,各自为各自的代表
uset[i] = i;
}
}
/*找到元素所在集合代表 如果位于同一集合则不合并*/
int find(int i)
{
if(i == uset[i]){//找代表时代表一直指向自己
return i;
}
return find(uset[i]);
}
void unite(int x,int y)//合并x y
{
//先找到节点所对应代表
int i = find(x);
int j = find(y);
if(i == j){
return;//不合并
}
uset[i] = j;//i的父节点就是j
}
图解:
- 初始化:(1,2,3等具体数据并不存在,为方便演示加入了数字)
void makeSet(int size)
{
for(int i = 0;i < size; i++) {
//每一个元素都指向自己,各自为各自的代表
uset[i] = i;
}
}
- 输入代码:
int main(int argc, char** argv)
{
makeSet(MAXSIZE);
unite(3,4);
unite(3,5);
unite(3,2);
unite(1,3);
int i = find(3);
printf("%d\n",i);
}
- 结构变为:
可以发现,数据1,2,3,4,5被合并成了以2为代表的一个集合
但是,观察左侧可以发现这种模式存在弊端,若是查找一个长链上末尾数字的代表时,最大最坏情况下(树退化成一条链时),单次查询的时间复杂度高达O(n),由此,我们引入并查集PIUS——路径压缩后的并查集
并查集的路径压缩
CODE:
#include<stdio.h>
//路径压缩:
/*
因为在特殊状况下 这棵树可能是一个巨长的链,所以设链的最后一个节点为x
每次执行find相当于遍历整个链条
只需把遍历过的节点都改为根的子节点,查询会块很多
*/
#define MAXSIZE 100
int uset[MAXSIZE];//定义一个足够长数组,用下标表示节点
int rank[MAXSIZE];//树的高度
/*构造并查集*/
void makeSet(int size);//size为节点数
int find(int i);
void unite(int x,int y);
int main(int argc, char** argv)
{
/*可以体现非路径压缩并查集的劣势的情况如下*/
makeSet(MAXSIZE);
unite(3,4);
unite(3,5);
unite(3,2);
unite(1,3);
/*在路径压缩后得到了优化*/
int i = find(3);
printf("%d\n",i);
}
void makeSet(int size)
{
for(int i = 0;i < size; i++) {
//每一个元素都指向自己,各自为各自的代表
uset[i] = i;
//树的高度
rank[i] = 0;
}
}
/*找到元素所在集合代表 如果位于同一集合则不合并*/
int find(int i)
{
if(i == uset[i]){
return i;
}
return uset[i] = find(uset[i]);//在第一次查找时直接将节点连接到根
}
void unite(int x,int y)
{
//先找到节点所对应代表
int i = find(x);
int j = find(y);
if(i == j){
return;//不合并
}
//判断两棵树的高度 再决定谁为子树
if (rank[i] < rank[j]){
uset[i] = j;
}else{
uset[j] = i;
if (rank[i] == rank[j]){
rank[i]++;
}
}
}
路径压缩的核心思想是引入rank,将一个变量抬高后就可以避免长链的形成,有效优化时间复杂度:
图解
- 初始化:(1,2,3等具体数据并不存在,为方便演示加入了数字)
void makeSet(int size)
{
for(int i = 0;i < size; i++) {
//每一个元素都指向自己,各自为各自的代表
uset[i] = i;
//树的高度
rank[i] = 0;
}
}
- 执行
unite(3,4);
- 执行如下代码:
int main(int argc, char** argv)
{
/*可以体现非路径压缩并查集的劣势的情况如下*/
makeSet(MAXSIZE);
unite(3,4);
unite(3,5);
unite(3,2);
unite(1,3);
/*在路径压缩后很好的得到了优化*/
int i = find(3);
printf("%d\n",i);
}
可以发现,数据1,2,3,4,5依旧被合并成了以2为代表的一个集合,虽然主函数代码相同,但是长链的情况消失了
这就是路径压缩的功劳
参考: