并查集及其路径压缩浅析

本文介绍了并查集这一实用的树形数据结构,用于处理不相交集合的查询与合并。通过路径压缩技术,将查询和合并操作的时间复杂度降低到常数级别,解决了树退化成链可能导致的效率问题。代码示例展示了如何实现并查集和路径压缩,以提高集合操作的性能。
摘要由CSDN通过智能技术生成

并查集(一种技巧)

  • 实用的树形数据结构
  • 主要处理不相交集合的查询与合并
  • 选出集合中的某个元素为代表,集合中具体包含哪些元素不重要
  • 将如下一系列操作复杂度降到常数级
    • 对于给定的元素,可以很快找到该元素所在集合
    • 可以很快合并两个元素所在集合
  • 用树根当一系列数字的代表
  • 初始化函数的目的是使每个元素都是以自身为代表

表示:

不交集森林把每一个集合以一棵树表示,每一个节点即是一个元素。节点保存着到它的父节点的引用,树的根节点则保存一个空引用或者到自身的引用或者其他无效值,以表示自身为根节点。这个数据结构最早由Bernard A. Galler和Michael J. Fischer于1964年提出,但是经过了数年才完成了精确的分析。

优化:路径压缩

将长链压缩为较少层数


SHOW ME THE CODE

#include<stdio.h>
#define MAXSIZE 5
//为举例方便此处以5为最大长度

int uset[MAXSIZE];//定义一个足够长数组,用下标表示节点

/*构造并查集*/
void makeSet(int size);//size为节点数【初始化】
void unite(int x,int y);//【并】
int find(int i);//【查】

int main(int argc, char** argv)
{
    makeSet(MAXSIZE);//初始化一个并查集,使每一个元素指向自己
    unite(3,4);//合并元素3和4
    
    int i = find(3);//i为3的根节点值
    printf("%d\n",i);
}

void makeSet(int size)
{
    for(int i = 0;i < size; i++) {
        //每一个元素都指向自己,各自为各自的代表
        uset[i] = i;
    }
}

/*找到元素所在集合代表 如果位于同一集合则不合并*/
int find(int i)
{
    if(i == uset[i]){//找代表时代表一直指向自己
        return i;
    }
    return find(uset[i]);
}

void unite(int x,int y)//合并x y
{
    //先找到节点所对应代表
    int i = find(x);
    int j = find(y);
    if(i == j){
        return;//不合并
    }
    uset[i] = j;//i的父节点就是j
}

图解:

  • 初始化:(1,2,3等具体数据并不存在,为方便演示加入了数字)
void makeSet(int size)
{
    for(int i = 0;i < size; i++) {
        //每一个元素都指向自己,各自为各自的代表
        uset[i] = i;
    }
}

在这里插入图片描述

  • 输入代码:
int main(int argc, char** argv)
{
    makeSet(MAXSIZE);
    unite(3,4);
    unite(3,5);
    unite(3,2);
    unite(1,3);
    int i = find(3);
    printf("%d\n",i);
}
  • 结构变为:
    在这里插入图片描述
    可以发现,数据1,2,3,4,5被合并成了以2为代表的一个集合

但是,观察左侧可以发现这种模式存在弊端,若是查找一个长链上末尾数字的代表时,最大最坏情况下(树退化成一条链时),单次查询的时间复杂度高达O(n),由此,我们引入并查集PIUS——路径压缩后的并查集


并查集的路径压缩

CODE:

#include<stdio.h>

//路径压缩:
/*
因为在特殊状况下 这棵树可能是一个巨长的链,所以设链的最后一个节点为x
每次执行find相当于遍历整个链条
只需把遍历过的节点都改为根的子节点,查询会块很多
*/

#define MAXSIZE 100

int uset[MAXSIZE];//定义一个足够长数组,用下标表示节点

int rank[MAXSIZE];//树的高度

/*构造并查集*/
void makeSet(int size);//size为节点数
int find(int i);
void unite(int x,int y);

int main(int argc, char** argv)
{
    /*可以体现非路径压缩并查集的劣势的情况如下*/
    makeSet(MAXSIZE);
    unite(3,4);
    unite(3,5);
    unite(3,2);
    unite(1,3);
    /*在路径压缩后得到了优化*/
    int i = find(3);
    printf("%d\n",i);
}

void makeSet(int size)
{
    for(int i = 0;i < size; i++) {
        //每一个元素都指向自己,各自为各自的代表
        uset[i] = i;
        //树的高度
        rank[i] = 0;
    }
}

/*找到元素所在集合代表 如果位于同一集合则不合并*/
int find(int i)
{
    if(i == uset[i]){
        return i;
    }
    return uset[i] = find(uset[i]);//在第一次查找时直接将节点连接到根
}

void unite(int x,int y)
{
    //先找到节点所对应代表
    int i = find(x);
    int j = find(y);
    if(i == j){
        return;//不合并
    }
    //判断两棵树的高度 再决定谁为子树
    if (rank[i] < rank[j]){
		uset[i] = j;
	}else{
		uset[j] = i;
		if (rank[i] == rank[j]){
			rank[i]++;
		}
	}
}

路径压缩的核心思想是引入rank,将一个变量抬高后就可以避免长链的形成,有效优化时间复杂度:

图解

  • 初始化:(1,2,3等具体数据并不存在,为方便演示加入了数字)
void makeSet(int size)
{
    for(int i = 0;i < size; i++) {
        //每一个元素都指向自己,各自为各自的代表
        uset[i] = i;
        //树的高度
        rank[i] = 0;
    }
}

在这里插入图片描述

  • 执行
unite(3,4);

在这里插入图片描述

  • 执行如下代码:
int main(int argc, char** argv)
{
    /*可以体现非路径压缩并查集的劣势的情况如下*/
    makeSet(MAXSIZE);
    unite(3,4);
    unite(3,5);
    unite(3,2);
    unite(1,3);
    /*在路径压缩后很好的得到了优化*/
    int i = find(3);
    printf("%d\n",i);
}

在这里插入图片描述
可以发现,数据1,2,3,4,5依旧被合并成了以2为代表的一个集合,虽然主函数代码相同,但是长链的情况消失了
这就是路径压缩的功劳


参考:

  1. 并查集–维基百科
  2. 算法学习笔记(1) : 并查集
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值