acwing算法基础课笔记4(二)

数论知识:

1、欧拉函数

欧拉函数 O(N)=1到N中所有与N互质的数的个数,如果可以把N写成它的分解质因数公式:

N=p1的a1次方 * p2的a2次方 * .....pk的ak次方

则它的欧拉函数等于N*(1-1/p1)*(1-1/p2)*...(1-1/pk),这是由容斥原理得到的(数学集合论),

我们将n减去所有它的因子的倍数,这其中有些数被减了两次,如p1,p2共同的倍数,我们再逐一加上每两个数的倍数,再减去每三个数的倍数...就能得到与N互质的数的个数了。 

#include<iostream>
#include<algorithm>

using namespace std;

int n, res;

int main()
{
	cin>>n;
	while(n--)
	{
		int a;
		cin>>a;
		res = a;
		for(int i=2;i<=a/i;i++)
		{
			if(a % i == 0)
			{
				res = res / i * (i - 1);
				while(a % i == 0) a /= i;
			}
		}
		if (a > 1) res = res / a * (a - 1);
		cout<<res<<endl;
	}
	return 0;
}

筛法求欧拉函数:

质数的欧拉函数为本身减1,因为自己是质数,除1外每个数都是与自己互质的数。

而i*primesj的欧拉函数与i的欧拉函数的关系

如果i mod pj ==0的话,i的所有质因子也是i * pj的质因子,且i中已经计算过pj,所以就差个pj。

else pj是i的最小质因子,且i的欧拉函数里面没有计算过pj,所以差 pj * (1-1/pj)即(pj-1)。

#include<iostream>
#include<algorithm>

using namespace std;

typedef long long LL;

const int N=1e6 + 10;

int primes[N], phi[N];
int cnt;
bool st[N];

LL getola(int n)
{
	LL res = 0;
	phi[1] = 1;
	for(int i=2;i<=n;i++)
	{
		if(!st[i])
		{
			primes[cnt++] = i;
			phi[i] = i-1;
		}
		
		for(int j=0;primes[j]<=n/i;j++)
		{
			st[i * primes[j]] = true;
			if(i % primes[j] == 0)
			{
				phi[i * primes[j]] = phi[i] * primes[j];
				break;
			}
			phi[i * primes[j]] = phi[i] * (primes[j] - 1);
		}
	}
	for(int i=0;i<=n;i++)
	{
		res += phi[i];
	}
	return res;
}
int main()
{
	int n;
	cin>>n;
	cout<<getola(n)<<endl;
	return 0;
}

欧拉定理:

 

 快速幂:可以快速的求出来a的k次方mod p 的结果(在logk时间下)

先预处理a的2的0次方mod p,a的2的1次方mod p。。。。,然后k分解为二进制是1的位求出来,找到这些数的预处理乘起来,就可以算出a的k次方mod p,。 

代码: 

​​#include<iostream>
#include<algorithm>

using namespace std;

typedef long long LL;

LL qmi(int a, int k, int p)
{
	LL res = 1;
	while(k)
	{
		if(k & 1) res = (LL) res * a % p;
		k >>= 1;
		a = (LL) a * a % p;//每一位都求对p的mod 
	}
	return res;
}

int main()
{
	int n;
	cin>>n;
	while(n--)
	{
		int a, k, p;
		scanf("%d%d%d", &a, &k, &p);
		cout<<qmi(a, k, p)<<endl;
	}
	return 0;
}

快速幂求逆元

 有用到费马定理:b的p-1次方与1同余,所以b*b的p-2次方也与1同余,所以b的逆元为b的p-2次方(当m为质数p时成立)

#include<iostream>
#include<algorithm>

using namespace std;

typedef long long LL;

LL qmi(int a, int k, int p)
{
	LL res = 1;
	while(k)
	{
		if(k & 1) res = (LL) res * a % p;
		k >>= 1;
		a = (LL) a * a % p;
	}
	return res;
}

int main()
{
	int n;
	cin>>n;
	while(n--)
	{
		int a, p;
		scanf("%d%d", &a, &p);
		LL res = qmi(a, p-2, p);
		if(a % p) cout<<res<<endl;
		else puts("impossible");
	}
	return 0;
}

 裴蜀定理:正整数a,b能凑出来的最小正整数一定是他们的最大公约数。

 

 

#include<iostream>
#include<algorithm>

using namespace std;

int exgcd(int a, int b, int &x, int &y)
{
	if(b == 0)
	{
		x = 1, y = 0;
		return a;
	}
	int d = exgcd(b, a % b, y, x);
	y -= (a / b * x);
	return d;
}

int main()
{
	int n;
	cin>>n;
	while(n--)
	{
		int a, b, x, y;
		scanf("%d%d", &a, &b);
		exgcd(a, b, x, y);
		printf("%d %d\n", x, y);
	}
	return 0;
}

 线性同余方程:

 

#include<iostream>
#include<algorithm>

using namespace std;

typedef long long LL;

int exgcd(int a, int b, int &x, int &y)
{
	if(!b)
	{
		x = 1, y = 0;
		return a;
	}
	else
	{
		int d = exgcd(b, a % b, y, x);
		y -= (a / b * x);
		return d; 
	}
}

int main()
{
	int n;
	cin>>n;
	while(n--)
	{
		int a, b, x, y, m;
		scanf("%d%d%d", &a, &b, &m);
		int d = exgcd(a, m, x, y);
		if(b % d) puts("impossible");
		else cout<<(LL) x * (b / d) % m<<endl;;
	}
	return 0;
}

中国剩余定理

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值