头歌 | 科比投篮预测——数据处理与分析

第2关:数据预处理

print("""Index(['playoffs', 'shot_made_flag', 'dist', 'angle', 'remaining_time',
       'action_type_Alley Oop Dunk Shot', 'action_type_Alley Oop Layup shot',
       'action_type_Cutting Finger Roll Layup Shot',
       'action_type_Cutting Layup Shot', 'action_type_Driving Bank shot',
       ...
       'season_2006--07', 'season_2007--08', 'season_2008--09',
       'season_2009--10', 'season_2010--11', 'season_2011--12',
       'season_2012--13', 'season_2013--14', 'season_2014--15',
       'season_2015--16'],
      dtype='object', length=130) """)

第3关:构造模型并调参

def student():  
     pass 
print("""n_estimators:100
max_depth:10""")

第4关:参数验证 

import matplotlib.pyplot as plt  
import warnings  
warnings.filterwarnings("ignore")  
  
def visual(range_n, scores_n, range_m, scores_m):  
    # 创建一个大小为10x5的图形  
    plt.figure(figsize=(10, 5))  
  
    # 绘制 n_estimators 的折线图  
    plt.subplot(1, 2, 1)  # 1行2列的第1个子图  
    plt.plot(range_n, scores_n)  
    plt.xlabel('number of trees')  
    plt.ylabel('score')  
  
    # 绘制 max_depth 的折线图  
    plt.subplot(1, 2, 2)  # 1行2列的第2个子图  
    plt.plot(range_m, scores_m)  
    plt.xlabel('max depth')  
    plt.ylabel('score')  
  
    # 调整子图之间的间距  
  
    # 保存图形到指定路径  
    plt.savefig('task4/result/pict1.jpg')  
    plt.close()  # 关闭图形,释放资源  
  
# 示例数据(实际使用时请替换为真实的取值范围和分数)  
range_n = [10, 50, 100, 150, 200]  
scores_n = [0.75, 0.80, 0.85, 0.84, 0.83]  
range_m = [3, 5, 7, 9, 11]  
scores_m = [0.78, 0.82, 0.84, 0.83, 0.81]  
  
# 调用函数绘制图形  
visual(range_n, scores_n, range_m, scores_m)

第5关:预测结果

import numpy as np
import pandas as pd
import scipy as sp
import warnings
warnings.filterwarnings("ignore")  # 忽略警告
with warnings.catch_warnings():
    warnings.filterwarnings("ignore",category=DeprecationWarning)
    from numpy.core.umath_tests import inner1d
from sklearn.ensemble import RandomForestClassifier
def student(n_estimators,max_depth):
    # ********* Begin *********#
    raw = pd.read_csv("task5/data.csv",index_col=0)
    df = raw[pd.notnull(raw['shot_made_flag'])]
    submission = raw[pd.isnull(raw['shot_made_flag'])]
    submission = submission.drop('shot_made_flag', 1)
    train = df.drop('shot_made_flag', 1)
    train_y = df['shot_made_flag']
    model = RandomForestClassifier(n_estimators=n_estimators, max_depth=max_depth)
    model.fit(train, train_y)
    pred = model.predict_proba(submission)
    # ********* End *********#
    return pred

都是实测的答案,若实在不会可以私信我,我可以代做(五米/关) 

内容概要 本资源详细介绍了如何通过数据分析和机器学习方法预测科比·布莱恩特在特定比赛情况下的投篮命中率。内容涵盖数据收集、数据预处理、特征工程、模型构建和评估等各个环节。通过实际案例和示例代码,展示了如何使用Python和Scikit-Learn等工具进行数据处理和模型训练。资源还包括特征重要性的分析和结果的可视化,帮助用户全面理解影响投篮命中率的关键因素。 适用人群 1. 体育专业人士: 教练和球队分析师:利用模型评估球员表现,制定战术策略。 球队管理层:通过模型评估球员潜力,进行球员选拔和交易决策。 2. 学术研究人员: 数据科学家:将此项目作为研究案例,探索更先进的模型和算法。 学生:将此项目作为课程作业或毕业设计,学习数据科学和机器学习技术。 3. 教育和培训人员: 数据科学讲师:将此项目作为教学案例,帮助学员掌握数据处理和模型构建的技能。 篮球教练:利用模型帮助年轻球员理解投篮技巧和比赛策略。 4. 媒体和体育记者: 数据报告撰写者:生成数据可视化报告,为观众提供深入的比赛分析。 互动应用开发者:将模型集成到互动应用中,提升用户体验。 5. 篮球爱好者: 球迷:通过模型了解科比投篮特点,增加对比赛的兴趣和理解。 数据爱好者:学习如何处理和分析体育数据,提升自己的数据科学技能。 适用场景及目标 1. 体育数据分析: 球队分析:教练和球队分析师可以使用此模型来评估科比在特定比赛情况下的投篮表现,从而制定更有效的战术安排。 球员评估:球队管理层可以通过模型评估球员的表现,帮助进行球员选拔和交易决策。 2. 学术研究: 数据科学项目:学生和研究人员可以将此项目作为数据科学和机器学习课程的一部分,学习从数据收集到模型构建的完整流程。 论文写作:研究人员可以扩展此项目,探讨更多影响投篮命中率的因素,发表学术论文。 3. 教育和培训: 数据科学培训:培训机构可以使用此项目作为教学案例,帮助学员掌握数据处理、特征工程和模型构建的技能。 篮球训练营:篮球训练营可以利用此模型帮助年轻球员理解投篮技巧和比赛策略的重要性。 4. 数据可视化: 数据报告:媒体和体育记者可以使用此模型生成的数据可视化报告,为观众提供更深入的比赛分析。 互动应用:开发团队可以将此模型集成到互动应用中,让用户可以输入不同的比赛条件,预测科比投篮命中率。 结论。
edu科比投篮预测是一种基于数据处理分析的方法,用于预测科比在比赛中的投篮命中率。 首先,数据处理是必不可少的一步。我们需要收集科比过去几年的比赛数据,包括比赛场次、投篮次数、投篮命中次数等信息。这些数据可以通过观看比赛录像、查阅统计数据等方式获得。然后,我们将这些数据进行整理和清洗,去除异常值和缺失值,以确保数据的准确性和完整性。 接下来,我们需要对数据进行分析。首先,我们可以计算科比过去几年的平均命中率作为参考。然后,我们可以将比赛数据其他相关因素进行关联分析,如比赛场次、比赛对手、比赛结果等。这可以帮助我们发现一些可能对科比投篮命中率产生影响的因素。 在数据分析的基础上,我们可以建立一个预测模型。常见的模型包括回归模型、时间序列模型等。我们可以根据科比投篮数据和其他相关因素的历史数据,通过这些模型进行训练和预测,从而得出科比在未来比赛中的投篮命中率预测值。模型的精确度和准确性取决于数据的质量和之相关的因素的选择。 最后,我们可以根据预测结果对科比投篮策略进行调整和优化。比如,如果预测科比在某一场比赛中的命中率较低,可以在比赛前采取相应的措施,如调整训练计划、调整比赛策略等,以提高科比投篮命中率。 总而言之,edu科比投篮预测是利用数据处理分析的方法,通过建立预测模型对科比在比赛中的投篮命中率进行预测。这项技术能够为科比和他的团队提供更多的决策参考,从而提高他在比赛中的投篮命中率和整体竞技能力。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

跑得动

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值