Python爬虫北京景点数据可视化和景点推荐系统

在文章末尾可以获取联系方式

Python****爬虫北京景点数据可视化 和景点推荐系统 开题报告

X X X X 大学**/学校/**学院

毕业论文(设计)开题报告书

学生姓名所属 学院学号
专业班级
论文(设计)题目Python爬虫北京景点数据可视化和景点推荐系统设计与实现
指导教师姓名(职称)开题日期
选题依据:1.研究背景与意义;2.国内外研究(应用与发展)现状。 1**:研究背景与意义** 研究背景: 随着互联网技术的快速发展,大量的数据每天都在产生。对于旅游行业来说,如何有效地收集、整理并分析这些数据,为游客提供更为个性化、有针对性的服务,成为了行业发展的重要方向。北京,作为中国的首都和历史文化名城,每年吸引着成千上万的游客。对于游客来说,面对众多的景点,如何选择并规划自己的行程是一个常见的问题。 在此背景下,利用爬虫技术收集北京各大旅游景点的数据,并结合数据可视化技术为游客呈现景点的各种信息,以及进一步开发景点推荐系统,显得尤为必要。 **研究意义:**1. 提供决策支持:通过数据可视化,游客可以更为直观地了解景点的热度、评价、人流量等信息,从而为自己的行程做出更为明智的决策。
  1. 个性化推荐:基于用户的历史行为、偏好等数据,景点推荐系统可以为游客提供个性化的景点推荐,提高游客的满意度。
  2. 旅游行业发展:对于旅游行业来说,通过对景点数据的分析,可以更好地了解游客的需求和行为习惯,进而优化产品和服务,推动行业的持续发展。
  3. 文化遗产保护:对于北京这样的历史文化名城,通过数据分析可以了解哪些景点更受游客欢迎,从而对这些景点进行重点保护和宣传,促进文化遗产的传承。
  4. 促进跨领域合作:该研究涉及爬虫技术、数据可视化、推荐算法等多个领域,可以促进这些领域的交叉合作,推动相关技术的进一步发展。

总之,北京景点数据可视化和景点推荐系统的研究不仅有助于提高游客的旅游体验,也为旅游行业和相关技术的发展带来了新的机遇和挑战。 2**:国****内外研究现状** 国内研究现状: 在中国,随着旅游业的持续繁荣和互联网的广泛普及,关于旅游景点数据可视化和推荐系统的研究逐渐受到关注。以下是国内研究现状的概述: 数据收集与整理:国内的研究者已经广泛使用爬虫技术从各大旅游网站、社交媒体等平台上收集景点数据,包括景点的位置、评价、人流量等。 数据可视化:在数据可视化方面,国内学者已经采用了多种技术和工具,如ECharts、Pyecharts等,为游客呈现景点的各种统计信息,帮助游客更好地了解景点情况。 推荐算法研究:针对景点推荐,国内的研究者已经探索了基于协同过滤、深度学习等多种推荐算法,并尝试融合多源数据进行推荐,如用户的地理位置、历史行为等。 移动应用与实践:国内已经出现了多个基于景点推荐系统的移动应用,这些应用结合了数据可视化和推荐功能,为游客提供个性化的旅游服务。 政策与产业支持:政府和相关产业也对智慧旅游、数字化旅游等方向给予了大力支持,推动了相关研究的深入进行。 国外研究现状: 国外在旅游景点数据可视化和推荐系统方面的研究起步较早,积累了丰富的经验和技术成果:1. 多源数据融合:国外研究者更注重从多源数据中提取信息,如社交媒体上的用户评论、图片分享等,这些数据为景点推荐提供了丰富的上下文信息。
2. 先进的可视化技术:在数据可视化方面,国外不仅关注静态的数据展示,还探索了交互式、沉浸式的可视化方法,如VR、AR技术在旅游体验中的应用。
3. 复杂的推荐算法:在推荐算法方面,国外学者已经深入研究了基于内容的推荐、协同过滤、混合推荐等多种方法,并结合机器学习、深度学习等技术进行优化。
4. 跨领域合作:国外的相关研究常常涉及计算机科学、地理学、社会学等多个学科领域的合作,这种跨学科的研究方法为问题的解决提供了更多的视角和工具。
5. 隐私与伦理关注:随着数据收集和分析技术的进步,国外学者也越来越关注用户隐私和数据伦理问题,如何在保证推荐质量的同时保护用户隐私是研究的重要方向之一。

综上所述,国内外在景点数据可视化和景点推荐系统方面都有一定的研究积累,但关注的焦点、采用的方法和面临的挑战有所不同。 3**:研究思路与方法** 3.1****研究思路 通过图书馆借阅开发相关书籍或者网络上寻找相关课题视频,查询网络以及向导师寻求帮助等方法解决技术上的问题。 具体步骤为: (1)对系统进行需求分析,明确管理员功能,前端开发功能,开发框架模式等; (2)对系统进行概要设计,搭建开发换进,建立系统的架构图、功能模块图等; (3)对系统管理后台,设计出所有功能模块; (4)对用户前端,设计出所有功能模块; (5)进行软件编码,实现系统各项功能; (6)对系统进行各种测试; (7)提交系统,撰写论文。 选定了项目开发模式、后台的开发框架,搭建好开发环境和安装好对应的开发工具;接下来就设计数据库,开发后台和接口,开发完整的项目后台和前端,完成最终的作品、测试、使用。 3.2研究方法 为了更好完善系统使用了以下研究方法: (1)文献阅读法 通过各个文献查找网站、学校图书馆以及百度百科查询和借鉴课题相关的论文资料,然后将适合的资料保存到本地,开发的时候使用。 (2)比较法:通过对国内外有关课题系统的功能、相关技术、内容等方面进行比较分析,从而提出系统所存在的问题,并提出相应的解决措施 (3)模拟法 模拟法是先依照原型的主要特征,创设一个相似的模型,然后通过模型来间接研究原型的一种形容方法。我们通过将本地电脑模拟为服务器进行本地操作,达到开发的最终效果。 3.3****可行性 1.技术可行性 以Windows7或10为操作系统,基于python3.8版本,采用PyCharm软件为开发工具,运用mysql进行数据库存储;后台管理系统硬件环境是PC机,用户使用任何能上网的电脑设置,使用浏览器即可访问新闻管理系统。 2.经济可行性 一方面,只要有能上网的电脑,系统的管理员在任何地方任何时候都可以管理,工作效率进一步提高从而节省人力、物力,只要会打字即可,不需要很高的学历;另一方面,系统的制作成本低,在现有的PC机上即可使用PyCharm开发者工具进行开发。 3.操作可行性 从管理来说,只要有一台普通的电脑就可以进行网站信息的设置、录入、修改,操作非常方便而且可行度很高。  4.数据来源可行性 来源知名房产网站数据,数据已经很普及了,使用也很广,有代表性 4**:系统初步设计方案** 4.1****主要设计技术 开发环境:python3.8+ 开发语言:Python 开发框架:Django框架 数据采集:requests + parsel + Xpath 可视化模块:Echarts 开发工具:Pycharm 数据库:mysql8 数据库管理工具:navicat 其他开发语言:html + css +javascript 4.2****研究内容 我们这里以我们打算实现的系统内容,分析如下,数据来源淘宝 **大屏全屏可视化展示:**1. 景点基础数据:爬虫采集分析多少条数据
2. 景点评分:评分1-50分、51-80分、81-90分、90-100分,以饼状图显示各个评分的数量和赞总的比例。
3. 排名前10景点的评分和点评数:以柱形图的形式显示前10景点、评分、点评数
4. 排名前10景点驴友到访率:以曲线图显示前10景点到
5. 排名前10景点列表:以列表滚动形式显示
6. 排名前10景点分数和攻略数:以双折线显示
7. 点评比例图:点评数量根据0、1-5、6-20、21-50、50以上以饼状图显示对应数量和占比
8. 景点列表:显示xx城市爬虫采集的所有景点,可以点击景点到采集的详细来源页面
9. 景点查询:输入关键字,查询景点,结果可以按排名、评分、攻略数、点评数、驴友到访率几个条件,从高到排列
10. 按条件推荐:按排名、评分、攻略数、点评数、驴友到访率几个条件,从高到排列

**后台内容:**1. 管理员登录、密码修改、退出系统
2. 所有景点数据:爬虫采集的所有景点数据列表,可以链接到原始地址
3. 评分统计:按评分0、1-50、51-80、81-90、91-100这几个参数,左侧以柱形图显示对应评分和数量、右侧以饼状图显示评分和对应数量
4. 攻略数统计:按评分0、1-5、6-20、21-50、大于50这几个参数,左侧以柱形图显示对应参数和数量、右侧以饼状图显示参数和对应数量
5. 点评数统计:按评分0、1-5、6-20、21-50、大于50这几个参数,左侧以折线图显示对应参数和点评数量、右侧以饼状图显示参数和对应数量以及占比

自我介绍一下,小编13年上海交大毕业,曾经在小公司待过,也去过华为、OPPO等大厂,18年进入阿里一直到现在。

深知大多数Python工程师,想要提升技能,往往是自己摸索成长或者是报班学习,但对于培训机构动则几千的学费,着实压力不小。自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前!

因此收集整理了一份《2024年Python开发全套学习资料》,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友,同时减轻大家的负担。
img
img



既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,基本涵盖了95%以上Python开发知识点,真正体系化!

由于文件比较大,这里只是将部分目录大纲截图出来,每个节点里面都包含大厂面经、学习笔记、源码讲义、实战项目、讲解视频,并且后续会持续更新

如果你觉得这些内容对你有帮助,可以添加V获取:vip1024c (备注Python)
img

做了那么多年开发,自学了很多门编程语言,我很明白学习资源对于学一门新语言的重要性,这些年也收藏了不少的Python干货,对我来说这些东西确实已经用不到了,但对于准备自学Python的人来说,或许它就是一个宝藏,可以给你省去很多的时间和精力。

别在网上瞎学了,我最近也做了一些资源的更新,只要你是我的粉丝,这期福利你都可拿走。

我先来介绍一下这些东西怎么用,文末抱走。


(1)Python所有方向的学习路线(新版)

这是我花了几天的时间去把Python所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。

最近我才对这些路线做了一下新的更新,知识体系更全面了。

在这里插入图片描述

(2)Python学习视频

包含了Python入门、爬虫、数据分析和web开发的学习视频,总共100多个,虽然没有那么全面,但是对于入门来说是没问题的,学完这些之后,你可以按照我上面的学习路线去网上找其他的知识资源进行进阶。

在这里插入图片描述

(3)100多个练手项目

我们在看视频学习的时候,不能光动眼动脑不动手,比较科学的学习方法是在理解之后运用它们,这时候练手项目就很适合了,只是里面的项目比较多,水平也是参差不齐,大家可以挑自己能做的项目去练练。

在这里插入图片描述

(4)200多本电子书

这些年我也收藏了很多电子书,大概200多本,有时候带实体书不方便的话,我就会去打开电子书看看,书籍可不一定比视频教程差,尤其是权威的技术书籍。

基本上主流的和经典的都有,这里我就不放图了,版权问题,个人看看是没有问题的。

(5)Python知识点汇总

知识点汇总有点像学习路线,但与学习路线不同的点就在于,知识点汇总更为细致,里面包含了对具体知识点的简单说明,而我们的学习路线则更为抽象和简单,只是为了方便大家只是某个领域你应该学习哪些技术栈。

在这里插入图片描述

(6)其他资料

还有其他的一些东西,比如说我自己出的Python入门图文类教程,没有电脑的时候用手机也可以学习知识,学会了理论之后再去敲代码实践验证,还有Python中文版的库资料、MySQL和HTML标签大全等等,这些都是可以送给粉丝们的东西。

在这里插入图片描述

这些都不是什么非常值钱的东西,但对于没有资源或者资源不是很好的学习者来说确实很不错,你要是用得到的话都可以直接抱走,关注过我的人都知道,这些都是可以拿到的。

一个人可以走的很快,但一群人才能走的更远。不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎扫码加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!
img

道,这些都是可以拿到的。**

一个人可以走的很快,但一群人才能走的更远。不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎扫码加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!
[外链图片转存中…(img-sxDPN0pK-1712857167471)]

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值