在这张图中,均值、方差和协方差都是常数,这就是平稳时间序列。
再想一想,上面的哪一幅图预测未来会更容易呢?第四个图,对吧?大多数统计模型都要求序列是平稳的,这样才能进行有效和精确的预测。
因此,总的来说,平稳时间序列是一个不依赖时间变化 (即均值、方差和协方差不随时间变化)的时间序列。在下一节中,我们将介绍各种检测给定序列是否平稳的方法。
2. 加载数据
在本节和后续几节中,将介绍检测时间序列数据的平稳性的方法,以及如何处理非平稳序列。同时,本文还提供了相应的Python代码。大家可以到:AirPassengers下载文中使用的数据集。
在继续分析数据集之前,首先加载和预处理数据。
好了,看来可以继续了!
3. 检验平稳的方法
下一步是确定给定的序列是否是平稳的,并对它做相应的处理。本节将介绍一些常见的方法,利用这些方法来检测序列是否平稳。
目视检验
看一下我们在上一节中使用的图形,仅需通过目测图形,便能够识别出序列的均值和方差是否随时间变化。同样,通过绘制数据图形,便能确定该序列的属性是否随时间而变化。